
Vibrating Circular Membrane Simulation and

Learning with Gaussian Markov Random Fields

Patrick Phillips

August 2019

1

Contents

1 Introduction 3

2 Analytic Solution of Vibrating Rectangular Membrance 3

3 Gaussian Markov Random Field (GMRF) 6
3.1 Shape Functions . 8
3.2 Sequential GMRF Regression Algorithm 9

4 Updating the Field in Time 12

5 Simulation and Results 14

6 Comments and Conclusion 19

7 Conclusion 19

2

1 Introduction

This report consists of six parts as laid out in the table of contents. In Section
2 I briefly derive the solution to the vibrating rectangular membrane with fixed
boundary conditions. In Section 3 I describe the sequential Gaussian Markov
Random Field (GMRF) regression algorithm for stationary (not time depen-
dent) processes. In Section 4 I present an algorithm to formalize the combina-
tion of analytic PDE solutions with the sequential GMRF regression to create
a learning process for time varying fields. In Section 5 I present a few figures
and videos of my simulation results with various initial conditions. In Section
6 I have a few brief comments and highlight the findings of my report.

2 Analytic Solution of Vibrating Rectangular
Membrance

The PDE that I am considering is the wave equation:

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
(1)

for 0 < x < L, 0 < y < H

with boundary conditions

u(0, y, t) = 0u(x, 0, t) = 0 (2)

u(L, y, t) = 0u(x,H, t) = 0

and initial conditions
u(x, y, 0) = α(x, y) (3)

∂u

∂t
(x, y, 0) = β(x, y). (4)

Applying the method of separation of variables by assuming a solution of the
form

u(x, y, t) = h(t)φ(x, y) (5)

and plugging this into the original PDE along with separation constant λ results
in

d2h

dt2
= −λc2h. (6)

As well as the eigenvalue problem

∂2φ

∂x2
+
∂2φ

∂y2
= −λφ (7)

with boundary conditions

φ(0, y) = 0φ(x, 0) = 0 (8)

φ(L, y) = 0φ(x,H) = 0

3

Again, using separation of variables, this time for the eigenvalue problem, as-
suming that

φ(x, y) = f(x)g(y) (9)

Allows us to introduce a new separation variable γ, and yields the equations

d2f

dx2
+ γf = 0 (10)

d2g

dy2
+ (λ− γ)g = 0 (11)

These two equations are just regular Sturm-Liouville eigenvalue problems, with
eigenvalues γ and (λ− γ) respectively. Using the boundary conditions to solve
these yields that

γn =
(nπ
L

)2

, n = 1, 2, 3, ... (12)

With corresponding eigenfunctions

fn(x) = sin
nπx

L
(13)

Now solving the other eigenvalue problem, we must use a second index, call it
m, since there are an infinite number of distinct λ values for each γn. Solving 11
gives that

λmn − γn =
(mπ
H

)2

,m = 1, 2, 3, ... (14)

With corresponding eigenfunctions

gmn(y) = sin
mπy

H
(15)

We can find λ explicitly by plugging in the known value of γn into equation 14.
This gives

λmn =
(nπ
L

)2

+
(mπ
H

)2

(16)

Now, putting together the solutions of fm(y) and gmn(y) to find φmn we get

φmn(x, y) = sin
nπx

L
sin

mπy

H
(17)

The solutions to h(t) are

hmn(t) = Amn cos c
√
λmnt+Bmn sin c

√
λmnt (18)

Putting everything together to find u(x, y, t) as a linear combination of all
possible solutions requires a sum over n and m, and yields

u(x, y, t) =

∞∑
m=1

∞∑
n=1

Amn sin
nπx

L
sin

mπy

H
cos c

√
λmnt

+

∞∑
m=1

∞∑
n=1

Bmn sin
nπx

L
sin

mπy

H
sin c

√
λmnt (19)

4

To find Amn and Bmn, we use the initial conditions. Applying the first initial of
u(x, y, 0) = α(x, y) and multiplying by our eigenfunctions φmn and integrating
over the domain, we find that

Amn =
4

LH

∫ L

0

∫ H

0

α(x, y)φmn(x, y)dxdy (20)

Similarly, we can use the initial condition for ∂u/∂t(x, y, 0) = β(x, y), to find
our Bmn as

Bmn =
4

c
√
λmnLH

∫ L

0

∫ H

0

β(x, y)φmn(x, y)dxdy (21)

5

3 Gaussian Markov Random Field (GMRF)

The GMRF regression algorithm is designed for estimation of stationary (not
time-dependent) spatial processes on a discrete grid of Gaussian Random vari-
ables (the G and R in GMRF). The Markov assumption (the M in GMRF)
is that any given vertex in the discrete grid is independent of all of the other
vertices in the grid conditioned on its immediate neighbors. A generalization of
the Markov process is a Markov blanket, or a CAR (j) process, which is where
the expectation of a process value is defined through the next j adjacent graph
vertices. This assumption enables the direct construction of a sparse precision
matrix, and more efficient learning of the Field (the F in GMRF).

Given a labeled graph G = (V, E) with vertices V = {1, n} and edges E , a
probabilistic graphical model η defines a GMRF, if the edges E are chosen such
that there is no edge between node i and j, iff ηi ⊥ ηj |η−ij , in which−ij denotes
the nodes adjacent to i and j . There is a theorem that states that the ij-th
entry of the precision matrix, Λi,j is zero iff ηi ⊥ ηj |η−ij . Proof of this theorem
can be found in [3].

In order to construct the GMRF, the spatial field F∗ ⊂ Rd is discretized into
a labeled undirected spatial graph with n∗ vertex positions S∗ = x∗1, . . . , x

∗
n,

where xi denotes the i -th field vertex position. The set of field locations S∗ is
extended to S with vertex positions S = x1, . . . xn as depicted in Figure 1, to
compensate boundary effects occurring due to the GMRF approximation. The
field F∗ can be extended to F and is then discretized into a regular grid S to
enable the construction of a GMRF and to compensate for boundary effects.

Figure 1: Field of the grid of random variables that the GRMF η is constructed
on. Taken from my supervisor’s paper [1]

Then on S, a GMRF η can be constructed as η ∼ N (0,Σ) is a GP on R2 defined
by the Matérn covariance function:

kMatérn(x, x′) = σ2
f

21−ν

Γ(ν)
[κ‖x− x′‖])νKν(κ||x−−x′‖) (22)

6

Figure 2: All of the elements of a column of the precision matrix associated
with one random variable and its neighbor vertices on a regular two-dimensional
GMRF lattice.

where ‖ ·‖ is the Euclidean distance in Rd and Kν is the modified Bessel func-
tion of the second kind (I’ve looked into what the modified Bessel functions are
defined as. I’ve also looked into why we want to use this covariance function,
apparently defining the covariance in this way is important in proving that the
GMRF constitutes a solution to a stochastic partial differential equation, for
a discussion of this that I was not able to understand very well see [2]). The
GMRF η ∼ N (0,Λ−1) on the a regular two-dimensional grid approximates a
Matérn GP for ν = 0 if the full Gaussian conditionals are

For the case of ν = 1, the full Gaussian conditionals should be

In each of these equations, a = κ2 +4 and τ adjusts the GMRF’s signal variance
independent of κ. The proof of these equations can be found in [4]. Figure
5 illustrates the correspondence between the spatial lattice locations and the
values in each column of Λ, found using these equations.

In the GMRF algorithm, the full conditionals for the border vertices of the
GMRF grid affect the estimation a lot. The commonly used boundary conditions
are the Dirichlet, Neumann, and periodic boundary conditions.

The values of the field are represented by the latent variable zi = z(si) ∈ R.

7

So the field belief on the lattice is denoted as z = [z1, . . . , zn]T. These latent
variables zi are expressed as

zi = (si , β) + ηi,∀1 ≤ i ≤ n (23)

µ(si, β) = mTβ. (24)

where, m = [m1 (si), · · · , mp(si)]
T ∈ Rp denotes the regression function vector

and the vector β = [β1, . . . , βp]
T contains the unknown regression coefficients.

The GMRF η ∼ N (0, Λη|θ) is really just used to model the correlations of the
field, where as the regression function vector models the mean values that are
being learned at each point. I initialize the GMRF precision matrix Λ−1

η|θ with

the full conditionals as shown in figure 2 and given in equations as a diagonal
matrix with large diagonal elements to represent high initial variance. The full
precision matrix is written to include the regression vector coefficients as

Λz|θ =

[
Λη|θ −Λη|θm

−mTΛη|θ mTΛη|θm+ T

]
(25)

Where z = [zT, βT]T ∈ Rn+p with full probability distribution given as

3.1 Shape Functions

The GMRF algorithm estimates the field on a discrete lattice {V, E} with
vertices V = {1, n} and edges E . To incorporate measurements taken off the
grid, shape functions are introduced. The set of continuous field locations is
discretized into a finite subset of n spatial input locations S = {s1, sn}. The
lattice S consists of a finite number of sub-domains Se,i, where each is enclosed
by four vertices si, with i = 1, 2, 3, 4. For the ease of illustration, S is chosen
as regular lattice with edges each of length a and b respectively, as depicted in
Figure 3. The field value at position q can be approximated through a sum of
weighted shape functions (basically a weighted mean of the vertices enclosing
the measurement location).

A local coordinate system Ke(xe, ye) is defined on Fe. The origin of Ke(xe, ye)
lies in the center of the element. The corresponding coordinate axis are or-
thogonal to each other and parallel to the respective element edges. The shape
functions are defined as

φe1 =
1

ab
(xe −

a

2
) (ye −

b

2
) , φe2 = − 1

ab
(xe +

a

2
) (ye −

b

2
) ,

8

Figure 3: Depiction of the weighted mean of the shape functions.

φe3 =
1

ab
(xe +

a

2
) (ye +

b

2
) , φe4 = − 1

ab
(xe −

a

2
)(ye +

b

2
)

And also for brevity, define the vector Φ1:k as Φ1:k = [ΦT
1 , . . . ,Φ

T
k]T

3.2 Sequential GMRF Regression Algorithm

In the regression algorithm, the canonical mean bk defined as bk = Λk|θµk|θ is
used instead of the normal predictive mean because it allows for easier updates
without computing the covariance matrix which is a computationally expensive
operation compared to the sparse matrix operations of the precision matrix.

The update rules for sequential GMRF regression come from the formula of
conditioning of a multivariate Gaussian distribution which can be found in [3].
The update rules are

The predictive mean can simply be reconstructed from the canonical mean as
µk = Λ−1

k bk. The predictive variance is given as diag(Σk), and the derivation of
the update rule for this can be found by using the Sherman-Morrison formula
[3] [1], and is seen in the Sequential GMRF Regression algorithm below.

9

Algorithm 1: Sequential GMRF Regression

INPUT: Canonical mean b0 = 0, Precision matrix Λ0 = Λz,
Hyperparameter vector θ, Extended field grid S, Regression function
vector m, Measurement variance σ2

y

begin
compute diag(Σ0) = diag (Λ−1

z);
for k ∈ Z > 0 do

get agent location xk and measurement yk;
compute Φk(xk,S);

bk = bk−1 + 1
σ2
y
ΦT
k yk;

Λk = Λk−1 + ΣNl=1
1
σ2
y
ΦT
k,lΦk,l;

hk = Λ−1
k−1ΦT

k ;

µk = Λ−1
k bk;

diag(Σk) = diag(Σk−1)− ΣNl=1
hT
k ·hk

σ2
y+Φk,lhk,l

;

end

end
OUTPUT: The GMRF mean µk and GMRF variance which is diag(Σk)

An extension of the model, is described in Xu et al. to incorporate a hyperpa-
rameter estimation [4]. This would look like defining a maximum a posteriori
distribution p(θ|y) ∼ p(y|θ)p(θ) with p(θ) being a uniform prior distribution
over a discrete set of possible hyperparameters (the notation in 4 uses π(θ)).
Another extension of the model, incorporated in the Xu et al’s algorithm shown
in Figure 4, takes account of N agents performing measurements simultane-
ously. My implementation was based off of Xu et al’s as well as of course my
supervisor’s Daniel Deucker [1], and is for only a single agent, but incorporates
the hyperparameter estimation. On the next page is the GMRF regression al-
gorithm as written Xu et Al, apologies for the different notation, if there are
terms that can’t be mapped to the ones used in this report, or for a complete
explanation of this algorithm, see [4].

10

Figure 4: Sequential GMRF regression algorithm by Xu et Al [4]

11

4 Updating the Field in Time

To update the field in time, we solve the PDE. In addition to knowing the gov-
erning PDE, I also need boundary conditions, and initial conditions. I assume
that I know the boundary conditions (an assumption I discuss in the conclusion).
For my first initial conditions I use the mean’s, µ’s, of the GMRF variables as
the initial value for the PDE. I use the partial derivative with respect to time
of my previous solution to the PDE I found in the last time step as my second
initial condition. Explicitly, these initial conditions are

α = ui(x, y, 0) = µi−1(x, y) (26)

β =
∂ui
∂t

(x, y, 0) =
∂ui−1

∂t
(x, y,dt)

where ui represents the i-th PDE solution, and µi−1 represents the predictive

mean from the sequential GMRF regression algorithm. Note that ∂ui−1

∂t is eval-
uated at time dt since this much time has passed since the solution was found.

A problem arises in using the first initial condition; for µ(x, y); we have dis-
crete values at different points across the vibrating membrane. Looking back
at how we solved the PDE analytically, we use this initial condition in solving
for Amn as seen in equation 20. So we can simply change the integral to a
summation, and use our discrete set of µ values to accurately approximate this
integral and solve for our Amn, using dxdy = dA = ∆A where ∆A is a small
amount of area, which as seen in Figure 5, should just be the distance between
vertices squared, `2. In implementation, scipy.integrate.simps() is used which
uses Simpson’s numerical integral rule. This rule is similar to a Riemann sum
which uses rectangles to approximate the integral, but instead Simpson’s rule
uses parabolas to approximate the integral.

Figure 5: Showing the grid length of the discrete field of the GMRF vertices

Note that since we assume we know the BC’s, ”solving the PDE” really only
consists of finding these constants Am,n as well as Bm,n. During implementa-
tion, it was discovered that using scipy.integrate.simps() twice for the double
integral over a discrete grid was much faster than alternatives such as perform-

12

ing numerical integration of a defined function using other methods, so this was
also done to find the Bm,n.

In order to use the previous solution to the wave equations as an approximate
initial condition for the current solution, we must first find the partial derivative
with respect to time of u(x, y, t). From equation 19 this is just

∂u

∂t
(x, y, t) =

1

c
√
λmn

∞∑
m=1

∞∑
n=1

Bmn sin
nπx

L
sin

mπy

H
cos c

√
λmnt (27)

− 1

c
√
λmn

∞∑
m=1

∞∑
n=1

Amn sin
nπx

L
sin

mπy

H
sin c

√
λmnt

The algorithm for incorporating the time updates by solving the PDE is for-
malized below in Algorithm 2.

Algorithm 2: GMRF regression with PDE time-stepping updates

INPUT: Canonical mean b0 = 0, Precision matrix Λ0 = Λz,
Hyperparameter vector θ, Extended field grid S, Regression function
vector m, Measurement variance σ2

y

begin
compute diag(Σ0) = diag (Λ−1

z);
for k ∈ Z > 0 do

obtain α as µi−1(x, y);

obtain β as ∂ui−1

∂t ;
find Am,n and Bm,n with numerical integration;
update µk = u(x, y, dt) at all grid points;
update canonical mean as bk = Λkµk;
get agent location xk and measurement yk;
compute Φk(xk,S);

bk = bk−1 + 1
σ2
y
ΦT
k yk;

Λk = Λk−1 + ΣNl=1
1
σ2
y
ΦT
k,lΦk,l;

hk = Λ−1
k−1ΦT

k ;

µk = Λ−1
k bk;

diag(Σk) = diag(Σk−1)− ΣNl=1
hT
k ·hk

σ2
y+Φk,lhk,l

;

end

end
OUTPUT: The GMRF mean µk and GMRF variance which is diag(Σk)

13

5 Simulation and Results

The implementation of Algorithm 2 is done in the gmrf-bayese-update() section
of gp-scripts.py. The main.py file is called to run the process. Various parame-
ters can be set in the Config.py file. Plots comparing the various simulations are
generated from the plot-data.py, and live plots of the simulation are generated
from the plot-scripts.py. Code can be found on my Github (and should also
be attached). The data folder stores data from the various runs. The control
algorithms folder includes various path planning algorithms that have been
set up with minimizing predictive variance as the objective function (I have a
separate report I wrote on these control algorithms if you’re interested).

There are three videos, with three sets of different initial conditions included
in this report. Hopefully the pdf graphics don’t break, but I will send the
videos separately in case they do. Of course feel free to try out different initial
conditions, they are set at the top of the ’vibrating-membrane-main.py’ file as
functions ’alpha’ and ’beta’. The video shows the analytic field in the top left,
labelled ”True Field”, the GMRF belief in the top right labelled ”GMRF mean”,
and the path that the agent is taking plotted on top of a contour plot of the
variance (the diagonal of the covariance matrix). The title of this plot just
reflects the control algorithm that is being used.

14

Video 1: Video of the algorithm described in this report combining sequential
GMRF regression with PDE updates.

This first video uses initial conditions

α = (x− L)(y −H) ∗ x ∗ y
β = sinx cos y

These initial conditions clearly satisfy the BC’s as α is zero at x=0, y=0, x=L,
or y=L.

15

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Video 2: Video of the algorithm described in this report combining sequential
GMRF regression with PDE updates.

The second video above uses the initial conditions

α = sin
πx

L
sin

πy

H
β = 0

Where the α here can ben seen to be just the first eigenfunction of the analytic
field.

16

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Video 3: Video of the algorithm described in this report combining
sequential GMRF regression with PDE updates. Initial conditions for this

simulation are described in section 5

The last video shown above uses the initial conditions

α = sinx cos y

β = 0

The α here clearly does not satisfy the boundary conditions. I was interested to
see how the true field behaved in this case, given a function that did not satisfy
the boundary condition as an IC. It acted as I expected, and takes on a shape
that is similar to the true shape of sinx cos y, but satisfies the BC’s.

17

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Figure 6: Plot of error vs path length. Path length of the agent is used, because
not all trials ran for the same amount of time, but they all ran for the same
path length. The error is measured as the average difference between the grid
point mean in the GMRF and the corresponding point in the analytic field.

From the first video and first set of initial conditions, data was collected on the
difference between the true field and GMRF approximated field. This data is
plotted in Figure 6. On the x-axes is the path length of the path the agent has
taken, on the y-axes is the root mean squared error (RMSE). This is a measure
of the average difference between the analytic field and the true field. As can
be seen the error clearly decreases with path length (and thus increasing time
and number of measurements). The error also decreases with simulations that
use smaller time steps ’dt’.

18

6 Comments and Conclusion

One thing I noticed while writing the report and adding videos is that the
boundary conditions are not always satisfied by the belief field. This is peculiar
because the way the algorithm works is by assuming the boundary conditions
when making a time update. However, this makes sense with the way the learn-
ing algorithm is implemented, because the information from the measurement
is taken in after the PDE’s update in time, and the GMRF algorithm of course
has no reason to obey the boundary conditions. It was verified that the solution
to the PDE did indeed satisfy the BC’s, as it must because of the eigenfunctions
φm,n given in equation 17. Although it still seems peculiar that passing into the
PDE initial conditions that don’t satisfy the boundary conditions still results
in a field that do satisfy the initial conditions. Although examining how the
constants Am,n and Bm,n are solved for in equations 20 and 21, I would not
expect that any numerical problems would arise.

7 Conclusion

One thing I’m interested to see is how using a combination of sequential GMRF
regression and PDE solution compares to the Spacetime Kalman Filter (STKF)
algorithm that was briefly mentioned. I plan on implementing a version of the
STKF and comparing the RMSE of each to see which is superior in matching
the analytic solution. Of course, the added information in using the boundary
conditions in the GMRF algorithm is clearly a bit of an unfair advantage. Thus
to eliminate this difference, and for making this method for universally appli-
cable, I plan to investigate ways to not use an assumption over the boundary
conditions when solving the PDE, such as perhaps using the Fourier Transform
solution.

References

[1] Daniel Andre Duecker, Andreas Rene Geist, Edwin Kreuzer, and Eugen
Solowjow. Learning environmental field exploration with computationally
constrained underwater robots: Gaussian processes meet stochastic optimal
control. Sensors, 19(9):2094, 2019.

[2] Finn Lindgren, H̊avard Rue, and Johan Lindström. An explicit link between
gaussian fields and gaussian markov random fields: the stochastic partial dif-
ferential equation approach. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 73(4):423–498, 2011.

[3] Havard Rue and Leonhard Held. Gaussian Markov random fields: theory
and applications. Chapman and Hall/CRC, 2005.

19

[4] Yunfei Xu, Jongeun Choi, Sarat Dass, and Tapabrata Maiti. Efficient
bayesian spatial prediction with mobile sensor networks using gaussian
markov random fields. Automatica, 49(12):3520–3530, 2013.

20

	Introduction
	Analytic Solution of Vibrating Rectangular Membrance
	Gaussian Markov Random Field (GMRF)
	Shape Functions
	Sequential GMRF Regression Algorithm

	Updating the Field in Time
	Simulation and Results
	Comments and Conclusion
	Conclusion

	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

