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Introduction

In general, the physical behavior of water is extremely complex. Energy
can be added and removed by the sun, winds, gravity, the motion of the
Earth, or the viscosity of the water itself. These effects combine to produce
behavior which is difficult to describe, making necessary the use of various
approximations for limiting cases.

The shallow water equations are one such useful approximation for water
dynamics where horizontal scales are much greater than vertical. In these
cases, surface disturbances and the impact of ground topography beneath the
water can be examined in detail. The equations governing these interactions
are nonlinear and therefore generally unsolvable by analytic means. However,
numerical methods can provide remarkably accurate insight into the behavior
of water in these situations. The equations explicitly take into account the
water depth, the sea-floor topography, and produce the velocity of the fluid
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Figure 1: The setup of the 1D wave equation

at a certain point and time. The equations can be used in either one or two
dimensions, and are generally valid under the shallow water assumptions and
when the depth of the water is nonzero.

1 Analytic Work

1.1 1D

The 1D shallow water equations (without bottom topography) are:

∂u

∂t
= −u∂u

∂x
− g∂h

∂x
(1)

∂h

∂t
= − ∂

∂x
(uh)

Here u is the positive x velocity, h is the depth of the fluid, and g is the
constant acceleration due to gravity. A plot of the 1D shallow water setup
can be seen in Figure 1.
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a) Linearizing using u = 0 + εũ and h = H0 + εh̃ leads to

ε
∂ũ

∂t
= −ε2ũ

∂ũ

∂x
− gε∂h̃

∂x

ε
∂h̃

∂t
= −εH0

∂ũ

∂x
− ε2 ∂

∂x
(uh)

ε2 terms are small and can be dropped, leading to the linearized equations

∂ũ

∂t
= −g∂h̃

∂x
(2)

∂h̃

∂t
= −H0

∂ũ

∂x
(3)

b) Taking a t derivative of 2 and an x derivative of 3, and equating the
mixed partial derivatives of h̃, the two equations can be combined into a
wave equation:

∂2ũ

∂t2
= H0g

∂2ũ

∂x2

Using the ansatz ũ = ei(Kx−ωt) yields the dispersion relation ω = K
√
H0g.

c) The characteristic velocity can be obtained from the dispersion relation by
dividing the frequency ω by the wavenumber K, or as the square root of the
coefficient of ∂2ũ

∂x2
in the PDE. In both cases, the velocity is found to be

√
H0g.

d) This relation implies that the velocity of waves in shallow water is pro-
portional to the height of those waves.

e) An appropriate CFL condition given the characteristic velocity
√
H0g

would be:

∆t ≤ c
∆x

|
√
H0g|

(4)
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1.2 2D

The 2D shallow water equations are:

∂u

∂t
= −u∂u

∂x
− v∂u

∂y
− g∂h

∂x
∂v

∂t
= −u∂v

∂x
− v∂v

∂y
− g∂h

∂y
∂h

∂t
= − ∂

∂x
(uh)− ∂

∂y
(vh)

Here u is again the positive x velocity, h is the depth of the fluid, g is the
constant acceleration due to gravity, and now v is the positive y velocity,.
Linearizing using the same reference states as in the 1D case, the linear
equations obtained are:

∂ũ

∂t
= −g∂h̃

∂x
(5)

∂ṽ

∂t
= −g∂h̃

∂y
(6)

∂h̃

∂t
= −H0

(∂ũ
∂x

+
∂ṽ

∂y

)
(7)

Using a similar ansatz ũ = ṽ = h̃ = ei(Kx+Ly−ωt) the system reduces to
the matrix equation

ω

ũṽ
h̃

 =

 0 0 gK
0 0 gL

H0K H0L 0

ũṽ
h̃

 (8)

Substituting the relations ũ = gK
ω
h̃ and ṽ = gL

ω
h̃, obtained from the

first two rows of 8, into the last row of 8, the dispersion relation ω =√
H0g(K2 + L2) is found.
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2 Numerical Work

2.1 Increasing Temporal and Spatial Discretization

In this section, we will analytically derive a second order temporal scheme
and fourth order spatial scheme. We will then verify that the higher order
scheme in each case has lower error for the same ∆t with numerical implemen-
tations. In general with these schemes we are trying to find u(x, tn+1) given
information about u(x, tn), u(x, tn−1), . . . . Higher order temporal schemes
use more of these terms, and the more terms used typically gives a more
accurate approximation, but at some computational cost. In general our
problem will be of the form

∂

∂t
u = f(u(x, t)). (9)

where f(u(x, t)) is some function that can be nonlinear and include spatial
derivatives. We will denote f(u(x, tn)) as fn. In this case for fn we have the
1D shallow water equations that were presented in Section 1 in equation 1.

2.1.1 Second Order Temporal Discretization

With our temporal scheme we want to approximate∫ tn+1

tn

fndt (10)

In order to approximate 10, suppose that we know fn and fn−1, as we are
trying to construct a second order scheme. From these two points we can
find a linear approximation for f(u) centered at t = tn as

f(u(x, t)) ≈ fn + (t− tn)
fn − fn−1

tn − tn−1

(11)

Putting this into the integral in 10, we get∫ tn+1

tn

f(u)dt = fn · (tn+1 − tn) +
(tn+1 − tn)2

2

fn − fn−1

tn − tn−1

(12)

Assuming that the time steps are of equal magnitude, that is tn+1 − tn =
tn − tn−1 = ∆t, we can rewrite 12 as∫ tn+1

tn

f(u)dt = fn ·∆t
[
1 +

1

2

∆t

∆t

]
− fn−1 ·

1

2

∆t2

∆t
(13)
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which simplifies to the second order temporal scheme∫ tn+1

tn

f(u)dt = ∆t

[
3

2
fn −

1

2
fn−1

]
(14)

We implemented and then verified that this second order scheme had lower
error using the two simple ODEs:

∂u

∂t
= eπt (15)

∂u

∂t
= cosπt (16)

The plots of the analytic solution and temporal scheme approximations
of u for each PDE, the absolute error of the estimation from the analytic
solution, and the percent error can be seen in Figures 2 and 3.

Figure 2: Plot of u=eπt, along with the solutions to PDE in 15 using the
first and second order temporal schemes. Note that the second order scheme
is more accurate.
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Figure 3: Plot of the analytic solution and approximate solutions to PDE in
16 using the first and second order temporal schemes. Note that the second
order scheme is more accurate.

2.1.2 Fourth Order Spatial Discretization

We will derive a fourth order spatial scheme to approximate the derivative
∂
∂x
u for interior points xi. To start, we write Taylor expansions for u at the

neighbouring points xi−2, xi−1, xi+1, and xi+2 centred about xi as

ui−2 ≈ ui − 2∆x
∂

∂x
u

∣∣∣∣
x=xi

+
1

2
4∆x2 ∂2

∂x2
u

∣∣∣∣
x=xi

− 1

6
8∆x3 ∂

3u

∂x3

∣∣∣∣
x=xi

+

1

24
∆x4 ∂

4u

∂x4

∣∣∣∣
x=xi

+O(∆x5)

ui−1 ≈ ui −∆x
∂

∂x
u

∣∣∣∣
x=xi

+
1

2
∆x2 ∂2

∂x2
u

∣∣∣∣
x=xi

− 1

6
∆x3 ∂

3u

∂x3

∣∣∣∣
x=xi

+

1

24
∆x4 ∂

4u

∂x4

∣∣∣∣
x=xi

+O(∆x5)

ui = ui

ui+1 ≈ ui + ∆x
∂

∂x
u

∣∣∣∣
x=xi

+
1

2
∆x2 ∂2

∂x2
u

∣∣∣∣
x=xi

+
1

6
∆x3 ∂

3u

∂x3

∣∣∣∣
x=xi

+
1

24
∆x4 ∂

4u

∂x4

∣∣∣∣
x=xi

+O(∆x5)
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ui+2 ≈ ui + 2∆x
∂

∂x
u

∣∣∣∣
x=xi

+
1

2
4∆x2 ∂2

∂x2
u

∣∣∣∣
x=xi

+
1

6
8∆x3 ∂

3u

∂x3

∣∣∣∣
x=xi

+

1

24
∆x4 ∂

4u

∂x4

∣∣∣∣
x=xi

+O(∆x5)

Where we have made the assumption that our grid is uniformly spaced.
From the Taylor Expansion above we can find the fourth order scheme by
taking a linear combination of 1

12
ui−2, −2

3
ui−1, 2

3
ui+1, and − 1

12
ui+2. The even

terms trivially cancel as they are all positive, and this linear combination
is symmetrically positive and negative. The odd terms, except for the first
partial derivative term, cancel as well, which results in

∆x
∂

∂x
u

∣∣∣∣
x=xi

+O(∆x5) =
1

12
ui−2 −

2

3
ui−1 +

2

3
ui+1 −

1

12
ui+2 (17)

Solving for ∆x ∂
∂x
u
∣∣
x=xi

gives the scheme:

∂

∂x
u

∣∣∣∣
x=xi

=
1
12
ui−2 − 2

3
ui−1 + 2

3
ui+1 − 1

12
ui+2

∆x
+O(∆x4)︸ ︷︷ ︸

Error term

(18)

The faster error convergence is verified in the plots shown in Figure 4,
where the error between the analytic derivative of two cos () functions is
compared to the derivative computed with the fourth order spatial scheme
and second order spatial scheme. The additional two lines on these graphs
are plots of dx2 and dx4. Note that the line representing the fourth order
scheme’s error is parallel to dx4 in each graph, implying that the rate of
convergence is like dx4 as predicted. Similarly, the lines for the second order
scheme and dx2 in each graph are parallel.
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(a) Graph demonstrating Error Convergence
using f(x) = cos 3x

(b) Graph demonstrating Error Convergence
using f(x) = cosx

Figure 4: Plots demonstrating the error convergence of the spatial schemes.
Code used to generate these plots can be found in the folder ”Demonstrating
Error Convergence of Higher Order Schemes.”

2.2 CFL Condition with Higher Order Model

With our higher order temporal scheme, we have more accurate approxima-
tions, so can use a higher CFL factor. The CFL factor is the value c that
appears in the equation for determining ∆t:

∆t ≤ c
∆x

|
√
H0g|

(19)

and takes on values 0 < c < 1. To see how high we can push this CFL factor,
we first run our simulation with a very small CFL, corresponding to a very
small time step. In this case the CFL baseline was taken as 0.001. We then
run simulations of the shallow water equations with CFL factors varying from
0.001 to 0.05 in increments of 0.005 for a total of 10 separate simulations. We
plot the difference in height of the final state from our baseline as a function
of the varying CFL. The plot of this can be see in Figure 5.

It’s important to note that this is not a plot of error explicitly, since
there is no analytic solution to compare to here, but comparing against this
baseline simulation that used a very small CFL and ∆t is still reasonable.
Based on Figure 5, the difference from the baseline is still reasonably small
when the CFL factor is 0.01, and this is our recommended limit. Lower CFL
factors will have even less error, but it’s a tradeoff of efficiency vs. accuracy.

9



Figure 5: Plot of the difference between the baseline simulation and simu-
lations with larger CFL factors. The difference plotted on the y-axis is the
sum over all recorded time steps and grid points of the difference between
the baseline simulation and the CFL factor plotted on the x-axis.

2.3 Adding Bottom Topography ηb

Bottom topography refers to the deviation of the sea floor from some repre-
sentative value such as the mean. The physical meaning of ηb can be seen
clearly in Figure 1, where negative values of ηb indicate valleys in the sea floor,
and positive values indicate hills. The ocean topography ηb can depend on
the position (x, y) in the 2D case or just (x) in our 1D case. Importantly, ηb
is not a function of time. The 1D shallow water equations with ηb look like

∂u

∂t
= −u∂u

∂x
− g ∂

∂x
(h+ ηb)

∂h

∂t
= − ∂

∂x
(uh)

To incorporate ηb into our model, we have a 1D array called ηb(x) which
indicates the ocean topography at every point in our spatial grid. Since the
partial derivative of ηb with respect to x is nonzero, we evaluate ∂

∂x
(h + ηb)

using our fourth order spatial scheme.
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The first test case that we consider to verify that our implementation of
adding ηb the ocean topography term is valid is to simply add a very small
Gaussian profiled topography of magnitude 10E-5. With this topography, we
compare to another simulation with the same set of initial conditions. The
results are shown in Figures 6 and 7, and are indistinguishable. Note for
replication, the initial conditions used were:

h(x, 0) = H0, u(x, 0) = 0.03 cos

(
4πx

Lx

)
+ 0.1 exp

(
−(

x

0.2
)2
)

Figure 6: Line plot for the initial conditions specified in (b), before topog-
raphy was added.

Our second validation test is to consider a case with non-trivial topogra-
phy but a flat water surface, and no initial velocity. The flat surface implies
there are no pressure gradients, so no velocity fields should be generated. For
this flat surface condition, we want h+ ηb =constant since this is the height
from the mean sea floor. Thus, there would be a uniform pressure gradi-
ent, and the system should remain at rest. To do this we take the initial
conditions:

h(x, 0) = sin
2πx

Lx
+H0

ηb(x) = − sin
2πx

Lx

where Lx is the length of the domain, and H0 is taken to be 10m. Clearly
h(x, 0) + ηb(x) = H0, so this satisfies the flat water condition. The line
plots of the position and velocity of the system can be seen in Figure 8, and
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Figure 7: Line plot for the initial conditions specified in (b), after small
10E-5 topography was added to simulation. Note that this appears identical
to Figure 6.

clearly, nothing is happening as expected, and the water is a constant height
of H0 = 10(m) for all x and t values.

Figure 8: This plot shows the velocity and position of the system as a
function of x, with different times color coded. Clearly, the height is flat at
a value of H0 = 10, and there is no movement.
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3 Simulations

3.1 Simulation 1: Zero Initial Velocity

In all these simulations, the following conditions were used:

u(x, 0) = 0, h(x, 0) = H0 + η0 exp
{

(−(x/L)2)
}
, ηB(x) = 0, L = 1/20

The two values H0 and η0 both modify the height of the initial disturbance
in the water. Similar behavior is observed no matter what the parameter
values are, just with different magnitudes in both time and height. The only
major difference is caused by the sign of η0.

The system is not symmetric with respect to η0. Initially, the results look
similar to an exact mirror image, but as time progresses the simulation with
a negative η0 appears to show some secondary oscillatory behavior with wave
components starting to oscillate closer to the initial disturbance than in the
case where η0 is positive. This is a result of the fact that a negative value
corresponds to an initial depression in the water depth, which will cause more
oscillatory behavior compared to an initial spike which will average out. The
height deviation and velocity plots for an H0 = 10 and η0 = ±0.1 ∗ H0 are
shown below.

Figure 9: Line Plot for H0 = 10, η0 = −0.1 ∗H0

These two parameters both affect the initial disturbance and speed of
wave propagation. In particular, as indicated by the derivation of the disper-
sion relation ω = K

√
H0g, a higher H0 leads to a much faster characteristic

velocity. This difference is seen comparing H0 = 100, where the timescales
are on the order of .01, and H0 = 10, where they are an order of magnitude
higher.
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Figure 10: Line Plot for H0 = 10, η0 = 0.1 ∗H0

Figure 11: Line Plot for H0 = 100, η0 = 0.1 ∗H0

H0 and η0 also both cause the height of the first and subsequent waves
to vary: lower absolute values of η0 cause the peak to be diminished, while
higher values of H0 raise it, and vice versa.
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Figure 12: Line Plot for H0 = 50, η0 = 0.15 ∗H0

3.2 Simulation 2: Constant Initial Velocity

The initial conditions used for the simulations discussed below were u(x, 0) =
U0, H0 = 1, h(x, 0) = H0 + η0 exp{−(x/L)2}, and η0 = 0.02, where H0 and
η0 were left fixed and U0 was varied from simulation to simulation between
[−1, 1].

Figure 13: Line Plot for U0 = 1

Physically speaking, the different values for constant initial velocity seem
to translate into differences in how far the wave disperses in the line plot.
Specifically, for smaller values of U0, the wave disperses further and more
evenly than for larger values. In the relevant plots this difference is most
obvious when comparing the change from U0 = 1 (Figure 13) and U0 = 0.1
(Figure 14). For the U0 = 1 case it seems like the larger initial velocity
results in waves with shorter wavelengths. This makes sense physically as
larger initial velocity results in a larger initial impulse to get the wave motion

15



Figure 14: Line Plot for U0 = 0.1

Figure 15: Line Plot for U0 = 0.001

started. That being said, with respect to the global behavior of the system,
different values for U0 do not result in much change.

Figure 16: Line Plot for U0 = −1
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Comparing Figure 16 with Figure 13, setting U0 = 1 or U0 = −1 results
in the same general behavior, just in a mirror image over the y axis from
each other. Thus this system is symmetric with respect to U0.

3.3 Simulation 3: Incorporating Bottom Topography

For these simulations, the initial conditions used were: u(x, 0) = U0, h(x, 0) =

H0, and ηB(x) = ∆η
2

tanh
(
|x|−x∗
w

)
, with H0 = 100, U0, between 0 and 1, and

∆η varying. These initial conditions were chosen to test how the same initial
wave behaves over varying heights of topography.

Figure 17: Line Plot for H0 = 100, U0 = 1, ∆η = 1

The water appears to mimic the shape of the topography beneath it,
starting basically at rest and then rising up as the wave propagates out.
Changing values for U0 and ∆η did not modify the shape of the disturbance,
only the magnitude.

This wave behavior matches the implications of the linearization done
in the analytic section. The faster-moving waves appear as the initial wave
passes over the topography, and reach greater heights than slower moving
waves. It would make intuitive sense that a normal water wave, which has
a characteristic shape over a flat bottom, would not exhibit any special be-
havior passing over topography. The appearance would simply mimic the
topographical shape.

A wave approaching a sloping coastline from an angle would thus behave
in a similar way. Components of the wave reaching the topography first
would move slower due to their reduced height, and the whole wave would
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Figure 18: Line Plot for H0 = 100, U0 = 0.5, ∆η = 2

spread out along the coastline as the components further away reached the
angle.

4 Conclusion

During this project we explored the shallow water equations. In the first
section we analytically found the dispersion relation in 1D and 2D, and de-
rived the characteristic velocity as well as a CFL condition using linearized
versions of the shallow water equations. In the next section we derived and
implemented a second order temporal scheme and fourth order spatial scheme
to numerically simulate the 1D shallow water equations, and implemented
bottom topography. We then tested various CFL factors as well as our imple-
mentation of bottom topography. In the final section we used our numerical
schemes to simulate the shallow water equations for various initial conditions,
exploring the effects of different initial position and velocity configurations as
well as the effects of bottom topography. We learned a lot about numerics,
PDEs, and shallow water. Thanks to Benjamin Storer for setting up this
great project!

4.1 Contributions

Patrick completed the numerical section. He derived (with much help from
the notes) and implemented the fourth order spatial scheme and second order
temporal scheme. He then used these implementations to demonstrate the
reduced error of these schemes. He also worked on determining a reasonable
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CFL factor and implementing bottom topography.
Nick completed the analytic derivations, as well as the simulations for

parts 3.3.1 and 3.3.3.
Sebastian completed the simulations and analysis of results for section

3.3.2 and compiled README data.
All team members verified that the results were valid and accurate, and

contributed to organizing and writing the report.
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