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1 Introduction

For the course of this paper let π(x) denote the number of primes less than or
equal to x. More explicitly we define π(x) : R→ Z≥0 as

π(x) :=
∑
p≤x

1.

For example we can see that π(10) = 4, the cardinality of the set {2, 3, 5, 7}.
Now the Prime Number Theorem states that π(x) ln(x)

x → 1 as x → ∞. Or
equivalently

π(x) ∼ x

lnx

where the notation f(x) ∼ g(x) means that limx→∞ f(x)/g(x) = 1.

The function π(x) shown in Figure 1 can be thought of as a cumulative density
function for the number of primes, and thus the Prime Number Theorem can
be thought of as a statement about the distribution of primes for large N [1].
Since d

dx
x

ln(x) →
1

ln(x) as x → ∞ we have that for large enough N , the proba-

bility that a random integer not greater than N is prime becomes very close to
1/ ln(N).

Figure 1: Plot of π(x) and x/ ln(x) [2].

We present the proof of the Prime Number Theorem by using the methods of
complex analysis along with two important functions in the theory of primes, the
Riemann zeta function and the Chebyshev function. In Section 2 we introduce
the Riemann zeta function and prove some important results regarding its zeros
and analyticity. Then in Section 3 we introduce the Chebyshev function and
prove a reduction from the Prime Number Theorem to a statement in terms of
the Chebyshev function. Finally in Section 4 we use this reduction and some
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interesting properties of these two functions to complete the proof of the Prime
Number Theorem.

2 The Riemann Zeta Function

The Riemann zeta function is defined as

ζ(z) :=

∞∑
n=1

1

nz

with complex exponent nz given by nz = ez logn. For z = 1 this series is the
harmonic series which diverges to +∞. To see where this series converges notice
that

|ζ(z)| =

∣∣∣∣∣
∞∑
n=1

1

nz

∣∣∣∣∣ ≤
∞∑
n=1

1

|nz|
=

∞∑
n=1

1

nx

where x = Re(z). By the integral test this last sum converges if the following
integral converges: ∫ ∞

t=1

1

tx
dt =

[
1

1− x
t1−x

]∞
x=1

which we can see will be on x = Re(z) > 1.

2.1 Euler’s Product Formula

Theorem 1 For Re(z) > 1 the Riemann zeta function is given by the prod-
uct

∞∏
j=1

(
1

1− p−zj

)

where {pj} is the sequence of increasing prime numbers {2, 3, 5, ...}. Further-
more ζ is zero free and analytic on Re(z) > 1.

Proof: First notice that we can write

(1− p−zj )(1 + p−zj + p−2z
j + ...+ p

−(nz−1)
j + p−nzj )

= 1 + p−zj + p−2z
j + ...+ p

−(nz−1)
j + p−nzj

− p−zj − p
−2z
j − ...− p−(nz−1)

j − p−nzj − p−(nz+1)
j

= 1− p−(nz+1)
j

which rearranging terms yields
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1

1− p−zj
− (1 + p−zj + p−2z

j + ...+ p
−(nz−1)
j + p−nzj ) =

p
−(nz+1)
j

1− p−zj
.

If Re(z) > 1 the right hand side in the equation above goes to 0 as n → ∞
leaving us with

1

1− p−zj
= 1 + p−zj + p−2z

j + ...

= 1 +
1

pzj
+

1

p2z
j

+ ... .

Now consider the partial product

m∏
j=1

1

1− p−zj
=

m∏
j=1

(1 +
1

pzj
+

1

p2z
j

+ ...).

If we actually multiply out the finitely many converging series on the right hand

side, we will be left with a sum of terms in the form of
1

1ipj1p
k
2 ...p

l
m

with all

infinitely many possible combinations of {i, j, k, ...l}. But by the Fundamental
Theorem of Algebra, we know each integer has a unique factorization over the
primes, so each term’s denominator is just some unique positive integer whose
factorization is over the first m primes. We can write this as

m∏
j=1

(1 +
1

p−zj
+

1

p−2z
j

+ ...) =
∑

i,j,k,...l

1

1ipj1p
k
2 ...p

l
m

=
∑
n∈Pm

1

nz

where Pm consists of 1 along with the positive integers whose factorization is in
the set {p1, ...pm}. Thus letting m→∞ we have that for Re(z) > 1

∞∏
j=1

1

1− p−zj
=

∞∑
n=1

1

nz
.

Because both the above series and product converge on Re(z) > 1, the product
representation proves that ζ is analytic and nonzero on Re(z) > 1 since for all
j we have that (1 − p−zj )−1 is analytic and nonzero and an infinite product
of analytic and nonzero functions will be analytic and nonzero as long as it
converges. �

2.2 Extending the Zeta Function

In order to make use of ζ in later sections we will need an analytic extension to
the right half plane Re(z) > 0.

Theorem 2 ζ has an extension to Re(z) > 0 and z 6= 1 with a simple pole at
z = 1 with residue 1.
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Proof: First recall the summation by parts formula which states that for se-
quences {an} and {bn} we have

s∑
n=r

an∆bn = as+1bs+1 − arbr −
s∑

n=r

bn+1∆an (1)

where ∆an = an+1 − an. Using sequences an = n and bn = 1
nz the summation

by parts formula yields

k−1∑
n=1

n

[
1

(n+ 1)z
− 1

nz

]
=

1

kz−1
− 1−

k−1∑
n=1

1

(n+ 1)z
.

Rearranging gives

1 +

k−1∑
n=1

1

(n+ 1)z
=

1

kz−1
−
k−1∑
n=1

n

[
1

(n+ 1)z
− 1

nz

]
. (2)

Now note that we also can write this term as an integral

n

[
1

(n+ 1)z
− 1

nz

]
= −nz

∫ n+1

n

t−z−1dt = −z
∫ n+1

n

[t]t−z−1dt

where [t] denotes the largest integer less than or equal to t. Plugging this into
Eq. 2 we can write

k∑
n=1

1

nz
= 1 +

k−1∑
n=1

1

(n+ 1)z
=

1

kz−1
+ z

k−1∑
n=1

∫ n+1

n

[t]t−z−1dt

=
1

kz−1
+ z

∫ k

1

[t]t−z−1dt.

As k →∞, we have the integral

ζ(z) = z

∫ ∞
1

[t]t−z−1dt

for Re(z) > 1. Now consider the similar integral

z

∫ ∞
1

tt−z−1dt = z

∫ ∞
1

t−zdt =
z

z − 1
= 1 +

1

z − 1
.

Combining the last two equations we can write

ζ(z) = 1 +
1

z − 1
+ z

∫ ∞
1

([t]− t)t−z−1dt. (3)
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Now fix k > 1 and consider the integral
∫ k

1
([t]− t)t−z−1dt. By Theorem 9 in the

Appendix, this integral is an entire function of z. Furthermore, if Re(z) > 0,
then

|
∫ k

1

([t]− t)t−z−1dt| ≤
∫ k

1

t−Re(z+1)dt ≤
∫ ∞

1

t−1−Re(z)dt =
1

Re(z)
.

This implies that the sequence fk(z) =
∫ k

1
([t]− t)t−z−1dt of analytic functions

on Re(z) > 0 is uniformly bounded on compact subsets. Hence by Vitali’s
Theorem (11 in the Appendix), the limit function

f(z) =

∫ ∞
1

([t]− t)t−z−1dt

(as the uniform limit on compact subsets of Re(z) > 0) is analytic, and using
Eq. 3 we have that

ζ(z) = 1 +
1

z − 1
+ z

∫ ∞
1

([t]− t)t−z−1dt (4)

is analytic on {z : Re(z) > 0, z 6= 1} and has a simple pole with residue 1 at
z = 1. �

2.3 Zeros of the Zeta Function

The Euler product representation of ζ given in Theorem 1 lets us conclude that
ζ has no zeros in Re(z) > 1. But what about the zeros of ζ in Re(z) ≤ 1? We
examine this question in more detail in Section 6, but here we will first prove
that ζ has no zeros on the line Re(z) = 1.

Theorem 3 The Riemann zeta function has no zeros on Re(z) = 1, so
(z − 1)ζ(z) is analytic and zero-free on a neighborhood of Re(z) ≥ 1.

Proof: Fix a real number y 6= 0 and consider the auxiliary function

h(x) = ζ3(x)ζ4(x+ iy)ζ(x+ i2y)

where x ∈ R and x > 1. Now consider ln |ζ(z)| for Re(z) > 1. By Euler’s
product formula we have

ln |ζ(z)| = −
∞∑
j=1

ln |1− p−zj |

= −Re

∞∑
j=1

Log(1− p−zj )

= Re

∞∑
j=1

∞∑
n=1

1

n
p−nzj
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where in the second line we use the definition of Log(z) = ln|z| + iArg(z) to
rewrite in terms of the real part of the principal logarthim, and then in the last

line we use the expansion −Log(1−w) =

∞∑
n=1

wn/n, valid for |w| < 1. Applying

similar analysis to ln |h(x)| we have

ln |h(x)| =3 ln |ζ(x)|+ 4 ln |ζ(x+ iy)|+ ln |ζ(x+ i2y)|

=3Re

∞∑
j=1

∞∑
n=1

1

n
p−nxj + 4Re

∞∑
j=1

∞∑
n=1

1

n
p−nx−inyj

+ Re

∞∑
j=1

∞∑
n=1

1

n
p−nx−i2nyj

=

∞∑
j=1

∞∑
n=1

1

n
p−nxj Re(3 + 4p−inyj + p−i2nyj ).

Now note that p−inyj = e−iny ln pj and p−i2nyj = e−i2ny ln pj . Thus taking

θ = −ny ln(pj) we can see that Re(3 + 4p−inyj + p−i2nyj ) has the form

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + 2 cos2 θ − 1 = 2(1 + cos θ)2 ≥ 0.

Since p−nxj /n ≥ 0 as well, we have that ln |h(x)| ≥ 0. Thus

|h(x)| = |ζ3(x)||ζ4(x+ iy)||ζ(x+ i2y)| ≥ 1.

So we have

|h(x)|
x− 1

= |(x− 1)ζ(x)|3|ζ(x+ iy)

x− 1
|4|ζ(x+ i2y)| ≥ 1

x− 1
.

Now suppose ζ(1 + iy) = 0. Considering the limit as x → 1+, we have
that the the left hand side of this inequality would approach a finite limit
|ζ ′(1 + iy)|4|ζ(1 + i2y)| as x → 1+ since ζ has a simple pole at 1 with residue
1. However, the right hand side of the inequality contradicts this. We conclude
that ζ(1 + iy) 6= 0. Since y is an arbitrary nonzero real number, ζ cannot have
any zeros on Re(z) = 1. �

3 The Chebyshev Function

We will now introduce two new functions, the Von Mangoldt and Chebyshev
functions, that are explicitly defined in terms of prime numbers. In Section 3.1
we will in fact show an equivalency between the Prime Number Theorem and
the asymptotic behavior of the Chebyshev function. In Section 3.2 we will find a
necessary upper bound on the asymptotic behavior of the Chebyshev function.
Then in section 3.3 we will find a connection between the zeta function and
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Chebyshev function that will turn out to be essential to our proof of the Prime
Number Theorem.

First define the Von Mangoldt function

Λ(n) =

{
ln p if n = pm for some m,
0 otherwise.

Thus Λ(n) is ln p if n is a power of the prime p, and is 0 if not. Next define the
Chebyshev function ψ on x ≥ 0 as

ψ(x) =
∑
n≤x

Λ(n).

Notice that we can solve for the Von Mangoldt function as

Λ(k) = ψ(k)− ψ(k − 1). (5)

An equivalent expression for ψ is

ψ(x) =
∑
p≤x

mp(x) ln p (6)

where the sum is over primes p ≤ x and mp(x) is the largest integer such
that pmp(x) ≤ x. For example, ψ(10.4) = 3 ln 2 + 2 ln 3 + ln 5 + ln 7. Note that

pmp(x) ≤ x iff mp(x) ln p ≤ lnx iff mp(x) ≤ lnx

ln p
. Thus mp(x) =

[
ln x
ln p

]
where as

before, [ ] denotes the greatest integer function.

3.1 Chebyshev’s Reduction of the Prime Number Theo-
rem

We will now find a statement equivalent to the Prime Number Theorem in terms
the Chebyshev function ψ(x) that we have defined.

Theorem 4 The Prime Number Theorem holds, that is π(x) lnx/x → 1, iff
ψ(x)/x→ 1 as x→∞.

Proof: Using our definition of ψ(x) in Eq. 6 we have

ψ(x) =
∑
p≤x

[
lnx

ln p
] ln p

≤
∑
p≤x

lnx

ln p
ln p

= lnx
∑
p≤x

1

= (lnx)π(x). (7)
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And for 1 < y < x, we have

π(x) = π(y) +
∑

y<p<x

1

≤ π(y) +
∑

y<p<x

ln p

ln y

< y +
1

ln y

∑
y<p≤x

ln p

≤ y +
1

ln y
ψ(x). (8)

Now taking y = x/(lnx)2 in Eq. 8, we get

π(x) ≤ x

(lnx)2
+

1

lnx− 2 ln lnx
ψ(x).

Multiplying each side by ln(x)/x,

π(x)
lnx

x
≤ 1

lnx
+

lnx

lnx− 2 ln lnx

ψ(x)

x
.

Now from Eq. 7 and above we have,

ψ(x)

x
≤ lnx

x
π(x) ≤ 1

lnx
+

lnx

lnx− 2 ln lnx

ψ(x)

x
.

Consider the limit as x → ∞. On the rightmost side 1/ ln(x) → 0 and
ln(x)/[ln(x)− 2 ln ln(x)]→ 1. Thus we see that ψ(x)/x→ 1 iff π(x) lnx/x→ 1
as x→∞. �

Of course the goal will now be to show that ψ(x)/x→ 1 as x→∞. A necessary
intermediate step for our proof will be to establish the following bound on the
asymptotic behavior of ψ(x) .

3.2 Upper Bound on Asymptotic Behavior of ψ(x)

Theorem 5 ψ(x) = O(x), that is there exists C > 0 and x > x0 such that
ψ(x) ≤ Cx, for all x > x0.

Proof: Again recall our definition ψ(x) =
∑
p≤x

[
ln x
ln p

]
ln p, x > 0. Fix x > 0

and let m be an integer such that 2m < x ≤ 2m+1 Then we have that

ψ(x) = ψ(2m) + ψ(x)− ψ(2m)

≤ ψ(2m) + ψ(2m+1)− ψ(2m)

=
∑
p≤2m

[
ln 2m

ln p

]
ln p+

∑
2m<p≤2m+1

[
ln 2m+1

ln p

]
ln p. (9)
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Consider for any positive integer n,∑
n<p≤2n

ln p = ln
∏

n<p<2n

p .

Now fix an arbitrary prime p such that n < p ≤ 2n. Clearly p divides (2n)!/n! =

n!

(
2n

n

)
. Since such a p cannot divide n! (all of n!’s divisors are less than p),

it follows that p divides
(

2n
n

)
. Thus by unique factorization and the fact that p

divides
(

2n
n

)
we have

∏
n<p<2n

p ≤
(

2n

n

)
< (1 + 1)2n (by the Binomial Theorem)

= 22n

and we arrive at ∑
n<p≤2n

ln p < ln(22n) = 2n ln 2. (10)

Thus from Eq. 10 we have

∑
p≤2m

ln p =

m∑
k=1

(
∑

2k−1<p≤2k

ln p) <

m∑
k=1

2k ln 2 < 2m+1 ln 2

as well as ∑
2m<p≤2m+1

ln p < 2m+1 ln 2.

Suppose p ≤ x is such that
[

ln x
ln p

]
> 1, then ln x

ln p ≥ 2. Thus we would have

x ≥ p2 and
√
x ≥ p. This means the terms in the sum

∑
p≤x

[
ln x
ln p

]
ln p where[

ln x
ln p

]
> 1 occur only when p ≤

√
x, and the sum of terms of this form can

contribute no more than ∑
p≤
√
x

lnx

ln p
ln p = π(

√
x) lnx.
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Thus if 2m < x ≤ 2m+1

ψ(x) ≤
∑
p≤2m

[
ln 2m

ln p

]
ln p+

∑
2m<p≤2m+1

[
ln 2m+1

ln p

]
ln p (by Eq. 9)

≤ 2m+1 ln 2 + 2m+1 ln 2 + π(
√
x) lnx (by Eq. 10)

= 2m+2 ln 2 + π(
√
x)

< 4x ln 2 + π(
√
x) lnx (since by assumption x > 2m)

≤ 4x ln 2 +
√
x lnx

= (4 ln 2 +
1√
x

lnx)x.

Since
1√
x

lnx→ 0 as x→∞, we have ψ(x) = O(x). �

3.3 Relating the Zeta and Chebyshev Functions

We now return to our hero, the Riemann zeta function, or more specifically,
we will look at the negative logarithmic derivative −ζ ′/ζ. By Theorem 3 we
know ζ is analytic on a neighborhood of {z : Rez ≥ 1 and z 6= 1}, and by
standard theorems in complex analysis, this implies all derivatives of ζ are also
analytic in this domain. Thus with the additional fact that ζ has no zeros on
a neighborhood of {z : Rez ≥ 1 and z 6= 1} (also by Theorem 3), the function
−ζ ′/ζ is analytic on this domain.

Theorem 6 For Re(z) > 1, −ζ ′/ζ is the Mellin Transform of ψ. That is

−ζ
′(z)

ζ(z)
= z

∫ ∞
1

ψ(t)t−z−1dt.

Proof: If Re(z) > 1, by Theorem 1 we have ζ(z) =
∏
p

(1 − p−z)−1. Applying

the product rule between the first term with prime p and the rest of the terms
we get,

ζ ′(z) =
d

dz

[
1

1− p−z

]
∗
∏
q 6=p

1

1− q−z
+

1

1− p−z
∗ d

dz

∏
q 6=p

1

1− q−z


=
−p−z ln p

(1− p−z)2
∗
∏
q 6=p

1

1− q−z
+

1

1− p−z
∗ d

dz

∏
q 6=p

1

1− q−z

 .
And we can apply the same product rule decomposition on the second term,
noting that the factor of (1 − p−z) can just be added to the resulting product
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and obtain the expression

ζ ′(z) =
∑
p

−p−z ln p

(1− p−z)2

∏
q 6=p

1

1− q−z

= ζ(z)
∑
p

−p−z ln p

(1− p−z)2
(1− p−z)

= ζ(z)
∑
p

−p−z ln p

1− p−z
.

Thus we have the expression for ζ ′/ζ,

−ζ
′(z)

ζ(z)
=
∑
p

p−z ln p

1− p−z
=
∑
p

∞∑
n=1

p−nz ln p.

Using similar analysis to that of Section 2, we can see that the iterated sum is
absolutely convergent for Re(z) > 1. Thus we can rearrange this as the double
sum

−ζ
′(z)

ζ(z)
=

∑
(p,n),n≥1

(pn)−z ln p

=
∑
k

k−z ln p, where k = pn for some n

=

∞∑
k=1

k−zΛ(k) (definition of the Von Mangoldt function!)

=

∞∑
k=1

k−z(ψ(k)− ψ(k − 1)). (by Eq. 5)

Now by using summation by parts again from Eq. 1, this time with ak = k−z, bk+1 = ψ(k),
and b1 = ψ(0) = 0, we can write

M∑
k=1

k−z(ψ(k)− ψ(k − 1)) =

ψ(M)(M + 1)−z +

M∑
k=1

ψ(k)(k−z − (k + 1)−z). (11)
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Considering just the last term above we have

M∑
k=1

ψ(k)(k−z − (k + 1)−z) =

M∑
k=1

ψ(k)z

∫ k+1

k

t−z−1dt

=

M∑
k=1

z

∫ k+1

k

ψ(t)t−z−1dt

= z

∫ M

1

ψ(t)t−z−1dt

where in the second line we use that ψ is constant on each interval [k, k+1).

Now consider the limit as M → ∞ of Eq. 11. The left hand side just becomes
−ζ ′/ζ by the derivation on the previous page. From the definition of ψ in
Eq. 6 we have ψ(x) ≤ x lnx, so if Re(z) > 1 we have ψ(M)(M + 1)−z → 0.
Finally the last term we have just found our expression for. Thus we have for
Re(z) > 1,

−ζ
′(z)

ζ(z)
= z

∫ ∞
1

ψ(t)t−z−1dt. �

4 Proof of the Prime Number Theorem

Our plan is to prove a “Tauberian” Theorem in Section 4.1, and then a vital
corollary regarding the Mellin Transform in Section 4.2. With this corollary we
will deduce the Prime Number Theorem.

4.1 Tauberian Theorem

Theorem 7 Let F be bounded and piecewise continuous on [0, +∞). Then its
Laplace transform

G(z) =

∫ ∞
0

F (t)e−ztdt

exists and is analytic on Re(z) > 0. Furthermore, assume that G has an analytic
extension to a neighborhood of the imaginary axis, Re(z) = 0. Then

∫∞
0
F (t)dt

exists as an improper integral and is equal to G(0) (In fact,
∫∞

0
F (t)e−iytdt

converges for every y ∈ R to G(iy)).

Proof: Suppose F is bounded and piecewise continuous on [0, +∞). Then for
0 < λ <∞ define,

Gλ(z) =

∫ λ

0

F (t)e−ztdt.

By Theorem 9 in the Appendix, each function Gλ is entire. Now consider the
modulus of each Gλ.
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|G(z)| =

∣∣∣∣∣
∫ λ

0

F (t)e−ztdt

∣∣∣∣∣
≤
∫ λ

0

|F (t)e−zt|dt (see Appendix Theorem 10)

=

∫ λ

0

|F (t)||e−xt||e−iyt|dt

(splitting the modulus and taking z = x+ iy)

≤
∫ ∞

0

|F (t)|e−xtdt (e−xt is real and |e−iyt| = 1)

≤
∫ ∞

0

e−xtdt (by assumption |F (t)| = 1)

=
e−λx

x

≤ 1

x
=

1

Re(z)
.

This shows each Gλ is bounded on Re(z) > 0. Thus by Vitali’s Theorem (11 in
the Appendix), F ’s Laplace transform G is defined and analytic on Re(z) > 0.
Assume, per hypothesis of the theorem, that G has been extended to an analytic
function on a region containing Re(z) ≥ 0. Since F is bounded we will also
assume (only for convenience) that |F (t)| ≤ 1, t ≥ 0.

Notice that the conclusion of our theorem can be expressed as

lim
λ→∞

Gλ(0) = G(0).

That is, the improper integral
∫∞

0
F (t)dt exists and converges to G(0) . We will

show that |Gλ(0) − G(0)| as λ → ∞ proving our theorem. To do so, we first
use Cauchy’s integral formula around a closed contour centered at 0 to get an
estimate of |Gλ(0)−G(0)|. For each R > 0, let δ(R) > 0 be so small that G is
analytic inside and on the closed path γR shown in Figure 2. (Note that since
G is analytic on an open set containing Re(z) ≥ 0, such a δ(R) > 0 must exist.)
We have by Cauchy’s integral formula,

G(0)−Gλ(0) =
1

2πi

∫
γR

(G(z)−Gλ(z))
1

z
dz. (12)

We will have to split this contour integral into two pieces, paying particular
attention to the integration along the path in Re(z) < 0 since we only have G
explicitly defined on the right half plane. Let γ+

R denote that portion of γR that
lies in Re(z) > 0, and γ−R the portion that lies in Re(z) < 0.

We will first bound the integral along γ+
R . As a first stab, let’s try applying the

ML inequality (12 in the Appendix) to bound the integral on the right hand

14



Figure 2: Contour integral path of γR [3].

side of the equation above. If we can show that this bound goes to 0 as λ→∞
our work for this half of the contour will be done. For z ∈ γ+

R and x = Re(z),
we have∣∣∣∣G(z)−Gλ(z)

z

∣∣∣∣ =
1

|z|

∣∣∣∣∣
∫ ∞

0

F (t)e−ztdt−
∫ λ

0

F (t)e−ztdt

∣∣∣∣∣
=

1

R

∣∣∣∣∫ ∞
λ

F (t)e−ztdt

∣∣∣∣ (|z| = R for z ∈ γ+
R )

≤ 1

R

∫ ∞
λ

|F (t)e−zt|dt (see Appendix Theorem 10)

≤ 1

R

∫ ∞
λ

e−xtdt (by assumption |F (t)| = 1)

=
1

R

e−λx

x
(13)

≤ 1

R

1

x
=

1

R

1

Re(z)
.

Unfortunately, 1/Re(z) is unbounded on γ+
R , as the contour approaches Re(z) = 0.

However, with some clever modifications of the contour integral in Eq. 12, we
can still find our desired bound.

G(0)−Gλ(0) = [G(0)−Gλ(0)]eλz

=
1

2πi

∫
γR

(G(z)−Gλ(z))eλz
1

z
dz (Cauchy’s Integral Formula)

=
1

2πi

∫
γR

(G(z)−Gλ(z))eλz
1

z
dz +

1

2πi

∫
γR

(G(z)−Gλ(z))eλz
z

R2
dz

=
1

2πi

∫
γR

(G(z)−Gλ(z))eλz
(

1

z
+

z

R2

)
dz.

15



It’s clear that we are still justified to use Cauchy’s Integral formula in the second
line since eλz is entire. In the third line we use the fact that each of the functions
in the second integrand is analytic inside γR, thus by Cauchy’s Theorem this
second integral is 0, and we are free to add it on.

Now note that for |z| = R we have

1

z
+

z

R2
=

z

|z|2
+

z

R2
=

2Re(z)

R2
.

so if z ∈ γ+
R we have by the previous line and Eq. 13

|(G(z)−Gλ(z))eλz
(

1

z
+

z

R2

)
| ≤ 1

Re(z)
e−λRe(z)eλRe(z) 2Re(z)

R2
=

2

R2
.

Thus the ML inequality yields∣∣∣∣∣ 1

2πi

∫
γ+
R

(G(z)−Gλ(z))eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤ 1

R
.

Note that this estimate of the integral along the path γ+
R is independent of λ,

however we are free to choose our contour and thus R to make this portion of
the integral vanish.

Now let us consider the contribution to the integral along γR of the integral
along γR. First we use the triangle inequality to obtain the estimate∣∣∣∣∣ 1

2πi

∫
γ−R

(G(z)−Gλ(z))eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣
≤

∣∣∣∣∣ 1

2πi

∫
γ−R

G(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣+
∣∣∣∣∣ 1

2πx

∫
γ−R

Gλ(z)eλz
(

1

z
+

z

R2

)
dz

∣∣∣∣∣
= |I1(R)|+ |I2(R)|.

First consider I2(R). Since Gλ(z) in this case is an entire function (only G is
not), we can replace the path of integration γ−R by the semicircular path from
iR to −iR in the left half plane. For z on this semicircular arc, the modulus of

16



the integrand in I2(R) is∣∣∣∣Gλ(z)eλz
(

1

z
+

z

R2

)∣∣∣∣ =

∣∣∣∣∣(
∫ λ

0

F (t)e−ztdt)eλz
2Re(z)

R2

∣∣∣∣∣
≤

∣∣∣∣∣
∫ λ

0

F (t)e−ztdt

∣∣∣∣∣ |eλz||2Re(z)

R2
|

≤
∫ λ

0

|F (t)e−zt|dt eλx 2|Re(z)|
R2

(by Theorem 10)

≤
∫ ∞

0

e−xtdt eλx
2|Re(z)|
R2

(assumption |F (t)| ≤ 1)

≤ 1

|Re(z)|
eλx

2|Re(z)|
R2

(integration and eλx ≤ 1 for x ≤ 0)

≤ 1

|Re(z)|
2|Re(z)|
R2

=
2

R2
.

Thus by the ML inequality we get

|I2(R)| ≤ (1/2π)(2/R2)(πR) = 1/R.

Finally, consider |I1(R)|. This will be the trickiest to bound since we only know
that on γR, G is an analytic extension of the explicitly defined G in the right
half plane. First choose a constant M(R) > 0 such that |G(z)| ≤ M(R) for
z ∈ γ−R . Choose δ1 such that 0 < δ1 < δ(R) and break up the integral defining
I1(R) into two parts, corresponding to Re(z) < −δ1 and Re(z) ≥ −δ1. This is
depicted in Figure 3.

Figure 3: Splitting γ−R .
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We know the leftmost part of the contour, where Re(z) ≤ −δ1, will have length
less than that of the full semicircle πR, so we can bound the contribution to
|I2(R)| from this part of the contour by

1

2π
M(R)e−λδ1

(
1

δ(R)
+

1

R

)
πR =

1

2
RM(R)

(
1

δ(R)
+

1

R

)
e−λδ1

which for fixed R and δ1 tends to 0 as λ → ∞. The second contribution to
|I2(R)| along the contour where (−δ1 ≤ Re(z) ≤ 0 is bounded in modulus
by

1

2π
M(R)

(
1

δ(R)
+

1

R

)
2R arcsin

δ1
R

where last factor arising from summing the lengths of the two short circular arcs
on contour depicted in Figure 3. Thus for fixed R and δ(R) we can make the
above expression as small as we please by taking δ1 sufficiently close to 0.

We are finally ready to prove the conclusion of this theorem. Let ε > 0 be given.
Take R = 4/ε and fix δ(R), 0 < δ(R) < R, such that G is analytic inside and on
γR. Then as we saw above, for all λ,

| 1

2πi

∫
γ+
R

(G(z)−Gλ(z))eλz
(

1

z
+

z

R2

)
dz| ≤ 1

R
=
ε

4

and

| 1

2πi

∫
γ−R

(Gλ(z)eλz
(

1

z
+

z

R2

)
dz| ≤ 1

R
=
ε

4
.

Now choose δ1 such that 0 < δ1 < δ(R) and such that

1

2π
M(R)

(
1

δ(R)
+

1

R

)
2R arcsin

δ1
R
<
ε

4
.

Since we have
1

2
RM(R)

(
1

δ(R)
+

1

R

)
e−λδ1 <

ε

4

for all λ sufficiently large, say λ ≥ λ0, it follows that

|Gλ(0)−G(0)| < ε, λ ≥ λ0. �

4.2 The Mellin Transform

Theorem 8 Let f be a nonnegative, piecewise continuous and nondecreasing
function on [1, ∞) such that f(x) = O(x) . Then its Mellin Transform

g(z) = z

∫ ∞
1

f(x)x−z−1dx

18



exists for Re(z) > 1 and defines an analytic function g. Also assume that for
some constant c, the function

g(z)− c

z − 1

has an analytic extension to a neighborhood of the line Re(z) = 1. Then as
x→∞,

f(x)

x
→ c.

Proof: Let f(x) and g(z) be as in the statement of the theorem above. Define
F on [0, +∞) by

F (t) = e−tf(et)− c.

Then F satisfies is bounded and piecewise continous on [0,+∞) so the first part
of the hypothesis of the Tauberian Theorem 7 is satisfied. Now let us consider
its Laplace transform,

G(z) =

∫ ∞
0

(e−tf(et)− c)e−ztdt.

Using the change of variables x = et and dx = etdt, this becomes

G(z) =

∫ ∞
1

(
1

x
f(x)− c

)
x−z

dx

x

=

∫ ∞
1

f(x)x−z−2dx− c
∫ ∞

1

x−z−1dx

=

∫ ∞
1

f(x)x−z−2dx− c

z
(direct integration)

=
g(z + 1)

z + 1
− c

z
(by the definition of the Mellin transform shifted)

=
1

z + 1

[
g(z + 1)− c

z
− c
]
.

Since by hypothesis we assume g(z)− c/(z − 1) has an analytic extension to a
neighborhood of the line Re(z) = 1 then it follows that g(z+1)−(c/z) has an an-
alytic extension to a neighborhood of the line Re(z) = 0. Consequently the same
is true of the above function G. Thus the hypotheses of the Tauberian Theorem

7 are satisfied, and we conclude that the improper integral

∫ ∞
0

F (t)dt exists

and converges to G(0). Writing this in terms of f , we have

∫ ∞
0

(e−tf(et)− c)dt

exists, or equivalently (reusing the change of variables x = et) that∫ ∞
1

(
f(x)

x
− c
)
dx

x
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exists. Recalling that f is nondecreasing, we can show f(x)/x→ c as x→∞. To
see this, let ε > 0 be given, and suppose that for some x0 > 0, [f(x0)/x0]−c ≥ 2ε.
It follows that

f(x) ≥ f(x0) ≥ x0(c+ 2ε) ≥ x(c+ ε) for x0 ≤ x ≤
c+ 2ε

c+ ε
x0.

Thus we can write∫ c+2ε
c+ε x0

x0

(
f(x)

x
− c
)
dx

x
≥
∫ c+2ε

c+ε x0

x0

(
x(c+ ε)

x
− c
)
dx

x

≥
∫ c+2ε

c+ε x0

x0

ε

x
dx

= ε ln

(
c+ 2ε

c+ ε

)
.

However, we know that

∫ x2

x1

(
f(x)

x
− c
)
dx

x
→ 0 as x1, x2 → ∞, because the

same integral from 1 to ∞ is convergent. Thus there exists N such that for all
x0 > N we have ∫ c+2ε

c+ε x0

x0

(
f(x)

x
− c
)
dx

x
< ε ln

(
c+ 2ε

c+ ε

)
.

But from the assumption that [f(x0)/x0] − c ≥ 2ε, we deduced the opposite
inequality for arbitrary x0. We must conclude that for all x0 greater than this
N , we have [f(x0)/x0]− c < 2ε.

Similarly suppose [f(x0)/x0] − c > −2ε for all x0 sufficiently large. This time
we can use the inequality

f(x) ≤ f(x0) ≤ x0(c− 2ε) ≤ x(c− ε) for

(
c− 2ε

c− ε

)
x0 ≤ x ≤ x0

and with the same argument as before, but now with limits of integration

from
c− 2ε

c− ε
x0 to x0, we will also reach a contradiction. Thus we must have

|[f(x)/x]− c| < 2ε as x→∞. Or equivalently f(x)/x→ c as x→∞. �

4.3 The Proof

We will restate our definition of the Chebyshev function ψ from Eq. 6 once
more,

ψ(x) =
∑
p≤x

[
lnx

ln p

]
ln p.
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Notice that ψ is a nonnegative, piecewise continuous, nondecreasing function on
[1, ∞). Furthermore, by Theorem 5 we have that ψ(x) = O(x), thus we may
take f = ψ in Theorem 8 and consider the Mellin transform

g(z) = z

∫ ∞
1

ψ(x)x−z−1dx.

By Theorem 6 we know this Mellin transform to be precisely the negative log-
arithmic derivative of ζ, that is g(z) = −ζ ′(z)/ζ(z). Also we have concluded

that ζ′(z)
ζ(z) + 1

z−1 has an analytic extension to a neighborhood of each point of

Re(z) = 1, and thus

g(z)− 1

z − 1
= −

[
ζ ′(z)

ζ(z)
+

1

z − 1

]

also has this analytic extension. Therefore we can conclude by Theorem 8 that
ψ(x)/x→ 1 as x→∞, which by Theorem 4 is equivalent to the Prime Number
Theorem. �

5 The History of the Prime Number Theorem

Conjectures of the asymptotic behavior of π(x) dates back to Gauss and Legen-
dre in the late 18th century. In fact Gauss believed the asymptotically equivalent
but more accurate

π(x) ∼ Li(x) :=

∫ ∞
2

dx

log x
.

This is only more accurate in the sense that |π(x) − Li(x)| grows more slowly
than |π(x)− x

log x | as x→∞. The graphs in Figure 4 compare the behavior of
these functions. It was not until a century after Gauss and Legendre’s conjec-

Figure 4: Asymptotic error of two approximations of π(x) [4]
.

tures that the Prime Number Theorem was proved independently by Hadamard
and Vallee Poussin in 1896 [5]. Their proofs were based on the recent work of
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Riemann who showed a connection between the the zeros of the Zeta function
and the distribution of primes as well as methods from complex analysis. In
1949 Atle Selberg and Paul Erdos developed proofs of the Prime Number The-
orem not relying on complex analysis [6]. The version of the proof given here
was first done much more recently in 1980 by D.J. Newman [7].

Newman’s proof is the shortest and arguably simplest proof of the Prime Num-
ber Theorem to date (some consider it more complex because of the reliance
on Cauchy’s Integral Formula) [6]. A notable feature of Newman’s proof that
helps make it much more brief than previous proofs is the use of the “Taube-
rian” Theorem presented in 4.1. This theorem and similar results are named
for Alfred Tauber, who is credited with proving the first theorem of this kind
in the 19th century [3].

Before we conclude this paper, we will now briefly explore one of the most
enthralling and yet still unresolved mathematical conjectures that involves the
Riemann zeta function we used throughout this proof.

6 The Riemann Hypothesis

The Riemann hypothesis is the conjecture that the Riemann zeta function has
its zeros only at the negative even integers as well as along the line Re(z) = 1

2 .
The zeros at the negative even integers are sometimes called the trivial zeros.
In our proof so far we have only found an analytic extension to Re(z) > 0. To
say anything about the values for complex number with negative real values, we
must first find an analytic extension to the rest of the complex plane. This can
be done by showing that ζ satisfies the functional equation

ζ(z) = 2zπz−1 sin(
πz

2
)Γ(1− z)ζ(1− z).

Then one may define ζ(z) for the remaining complex numbers Re(z) ≤ 0 and
z 6= 0 by applying this functional equation. The zeros along the negative even
integers are now trivial to see as sin(πz/2) = 0 whenever z is a negative even
integer (The observant reader might ask why this argument does not hold for
the positive even integers, however at these values the simple zeros of sin(πz2 )
are cancelled by the simple poles of the gamma function at Γ(1− z)).

This functional equation also implies that ζ has no other zeros with negative
real part other than these trivial zeros. We have also shown in Theorem 3 that ζ
has no zeros for Re(z) ≥ 1. Thus all that is left to prove the Riemann conjecture
is to show no other zeros exist in the so called critical strip 0 < Re(z) < 1 except
Re(z) = 1/2. How hard can that be?
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Appendix

This appendix includes the statement and proof of a few theorems used through-
out the paper.

Theorem 9 Suppose [a, b] ⊆ R, and let ϕ be a continuous complex-valued func-
tion on the product space Ω×[a, b]. Assume that for each t ∈ [a, b], the function

z → ϕ(z, t) is analytic on Ω. Define F on Ω by F (z) =

∫ b

a

ϕ(z, t)dt, z ∈ Ω.

Then F is analytic on Ω and

F ′(z) =

∫ b

a

∂ϕ

∂z
(z, t)dt, z ∈ Ω.

Proof : Fix any diskD(z0, r) such thatD(z0, r) ⊆ Ω. Then for each z ∈ D(z0, r)
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we have

F (z) =

∫ b

a

ϕ(z, t)dt

=
1

2πi

∫ b

a

(∫
C(z0,γ)

ϕ(w, t)

w − z
dw

)
dt (by Cauchy’s Integral Formula)

=
1

2πi

∫
C(z0,r)

(∫ b

a

ϕ(w, t)dt

)
1

w − z
dw.

Where the last equality can be justified by writing the path integral as an
ordinary definite integral and observing that the interchange in the order of
integration follows from being allowed to interchange integrals over rectangles
for continuous functions.

Now

∫ b

a

ϕ(w, t)dt is a continuous function of w since we assumed the continuity

of ϕ on Ω × [a, b]), hence by the generalized Cauchy Integral Formula, F is
analytic on D(z0, r) and for each z ∈ D(z0, r) ,

F ′(z) =
1

2πi

∫
C(z0,r)

(∫ b

a

ϕ(w, t)dt

)
1

(w − z)2
dw

=

∫ b

a

(
1

2πi

∫
C(z0,r)

ϕ(w, t)

(w − z)2
dw

)
dt

=

∫ b

a

∂ϕ

∂z
(z, t)dt.

Where the last equality also follows from the generalized Cauchy Integral For-
mula. �

Theorem 10 “The modulus of the integral is less than the integral of
the modulus”

Let [a, b] be a closed real interval, and f : [a, b] → C be a continuous complex
function. Then ∣∣∣∣∣

∫ b

a

f(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)|dt

Proof: Define z ∈ C as the value of
∫ b
a
f(t)dt. Let r ∈ [0,∞) be the modulus

of z (which is precisely the modulus we want to bound), and θ ∈ [0, 2π) be the
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argument of z. Now we can write z as reiθ, and then

r = ze−iθ

=

∫ b

a

e−iθf (t)

=

∫ b

a

Re
(
e−iθf (t)

)
+ i

∫ b

a

Im
(
e−iθf (t)

)
Where in the last line we have split the integral into complex and imaginary

parts in the standard way. Since r is just a real number we have

Im (r) =

∫ b

a

Im
(
e−iθf (t)

)
dt = 0

Thus,

r =

∫ b

a

Re
(
e−iθf (t)

)
=

∫ b

a

∣∣Re
(
e−iθf (t)

)∣∣ (modulus of real number)

=

∫ b

a

∣∣e−iθf (t)
∣∣

=

∫ b

a

|f (t)|

And since again r was precisely the integral we were trying to bound, this
concludes the proof. �

Theorem 11 (Vitali’s Theorem) Let {fn} be a bounded sequence in A(Ω)
where Ω is connected. Suppose that {fn} converges pointwise on S ⊆ Ω and S
has a limit point in Ω. Then {fn} is uniformly Cauchy on compact subsets of Ω,
hence uniformly convergent on compact subsets of Ω to some f ∈ A(Ω).

Proof: See Chapter 5 of Illinois Complex Analysis.

Theorem 12 (ML Inequality) If f(z) is a complex-valued, continuous func-
tion on the contour Γ and if its modulus is bounded by a constant M for all z
on Γ, then

∣∣∣∣∫
Γ

f(z) dz

∣∣∣∣ ≤M l(Γ)

where l(Γ) is the arc length of Γ.
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Proof: Let γ(t) be a parameterization of the contour with α ≤ t ≤ β, then the
proof follows simply from∣∣∣∣∫

Γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∣
∫ β

α

f(γ(t))γ′(t) dt

∣∣∣∣∣
≤
∫ β

α

|f(γ(t))| |γ′(t)| dt

≤M
∫ β

α

|γ′(t)| dt = M l(Γ). �
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