TERM PAPER PHY 235w

Snowboarding the Halfpipe with Classical Mechanics

Patrick Phillips

University of Rochester undergraduate.
Physics B.A., Computer Science B.S.

ABSTRACT: The goal of this report is to characterize the path and motion that a snow-
boarder should carry out to achieve the best score and performance on the halfpipe. Per-
formance on the halfpipe is primarily a function of total time spent in the air and total
degree of rotation. I look at what path the rigid body snowboarder should take in order
to maximize his air time, as well as what the snowboarder must do in order to perform
tricks in the air. I find that the snowboarder should, in general, work to maximize his
kinetic energy by applying as much pumping force as possible, while losing as little energy
to friction and drag forces as he can.
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1 Problem Introduction

The goal of this report is to characterize the path and motion that a snowboarder should
carry out to achieve the best score on the halfpipe. Previous work has been dedicated to
researching how to create the optimal halfpipe course in order to allow the most exciting
performances [1-3]. The problem I investigate here is, given the standard halfpipe course,
how to best optimize the path of the snowboarder. The metric for a good path is a difficult
one to choose, as scoring is infamously subjective in halfpipe competitions. Recent work
has been done to use new technology to try to create an objective, standardized scoring
system, such as evaluation based on tri-axial rate gyroscope data which involves a mounted
inertial sensor [5].

The primary measurable features of a good performance are vertical air, maximum
degree of rotation, maximum air time, average degree of rotation, and average air time [4—6].
A specific performance measure used previously to predict scores is the equation proposed
by Harding et al.

PredictedScore = 11.424(AAT) + 0.013(ADR) — 2.23 (1.1)

Where AAT is the average air time and ADR is the average degree of rotation over
all jumps [4]. The averages of air time and degree of rotation of course at least partially
account for maximum air time and degree of rotation, making it a reasonable metric. The
number of jumps that a snowboarder is allowed to perform in standard halfpipe competition
such as the Olympics is 5-8 [1]. T assume it to be a constant of 5 jumps.

Standard dimensions of a snow halfpipe are given in Table 1 with the physical features
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(b) Halfpipe Front View

(a) Halfpipe Aerial View

Figure 1: Graphic representation of the dimensions of a snow halfpipe [7]

Feature | Dimension
1 Length of halfpipe 125m
2 Slope angle 16°
3 Width 18m
4 Width of side deck Tm
5 Height 5.4m
6 | Height of pure vertical .2m

Table 1: Dimensions of a Standard Snow Halfpipe [7]

numbered and diagrammed in Figure 1. The halfpipe is not technically a half cylinder as
it would appear in 1b, however it is assumed to be.

In section 2 I develop the rigid body model of the snowboarder and introduce the
inertia tensor. In sections 3 and section 4 I describe the motion in the air and in the
halfpipe respectively. Then in section 5 I describe how to combine these models of motion
in the air and on the halfpipe to describe a whole run down the halfpipe. In section 6 I use
conservation of energy to analyze the problem of getting the maximum air time. Finally
in section 7 I describe the mechanics of flipping and spinning, and how to maximize degree
of rotation.

2 Rigid Body Model

In this section the model of the snowboarder is developed. The body and board of the
snowboarder are assumed to constitute a rigid body, frozen in place as depicted in Fig-
ure 2. This is a strong assumption that disregards many of the more interesting features of
snowboarding the halfpipe, and thus the rigid body assumption is relaxed in later analysis.

The center of mass of a multi-particle system, such as the rigid body of the snow-
boarder, can be described:

— 1 _ 1 [_
Rem = i Zmin = /rdm (2.1)



Figure 2: The rigid body representation of a snowboarder that will be used. Note the
symmetry about the z-axis. The origin is the snowboarder’s center of mass Re,.

Where the summation is replaced by an integral for a continuous distribution, which is
more appropriate here. The center of mass of a human is typically around 10cm below the
navel. For the snowboarder rigid body model, the center of mass is assumed to be lower
than that, at waist level, due to the added mass of the snowboard.

The angular momentum of a system of particles with respect to the origin of the
coordinate system can be written

L= TLo=) (TaxmaTa) (2.2)

«

It can be shown that the angular momentum can be rewritten as

z == Zcm + Zwrt,cm (23)

Where L, is the angular momentum of the center of mass, and fwmcm is the an-
gular momentum of the body with respect to the center of mass. When the origin of the
coordinate system is chosen to be the center of mass, the first term goes to 0.

The inertia tensor can be written as

I1 g Ii3
I = | Iy Iy I3 (24)
I3y Ip I33

Where the components are defined as

Iij = Zma (HTQH&U — 1‘Z‘$j) (2.5)

With the inertia tensor I, the components of the angular momentum can be written
L= Ljw (2.6)
J

Referring to the rigid body model in Figure 2, it is immediately clear that there
is symmetry about the z-axis. Thus, it is important to note, that one of the principal

moments of inertia will be along this axis.



3 Motion in the Air

This section will explore the motion of the snowboarder in the air. Equations will be
developed to state the required initial linear and angular velocity the snowboarder must
take off the edge of the halfpipe with in order to preform m-spins before landing. This
section will use the rigid body model, and thus only the motion of the center of mass is
considered.

Consider the simple free body diagram of the snowboarder right before he takes off
shown in Figure 3. In this diagram the x-axis is pointing down the slope of the halfpipe.
The air time of a jump is only a function of the linear velocity in the z-direction at takeoff.
The velocity in the x-direction is irrelevant, because the z axis is along the slope of the
hill. The slope of the hill can be seen in Figure 4, where # is 16°as given in Table 1. It
also can be seen from Figure 4 that the components of gravity are given as —g cos(#) and
gsin(f) along the z and y axes respectively.

Figure 3: Free body diagram of the snowboarder before jump at the edge of the halfpipe.
The origin is the snowboarder’s center of mass Re,

Now we will find the position and velocity that the snowboarder will land with given
the initial velocity and position. Looking at Figure 3, it seems reasonable to assume that
there is no velocity in the y-direction at takeoff, so motion can be considered in only the



Figure 4: Slope of the hill, and path of snowboarder in the air along the x-z plane of the
halfpipe.

x-z plane as depicted in Figure 4. The equation of motion of the snowboarder is given as

d
md—: =mg — kv (3.1)

Where k is a drag coefficient and g is (gsin(#),0,—gcos(f)). We can split 3.1 into
component form as

da k
d—f = gsin(6) - (3.2)
% = —gcos(f) — %2 (3.3)

Integrating equations 3.2 and 3.3 using an integrating factor el mdt we get

() = mg sin(6) (g — mg 51n(0))6%t (3.4)
k k
— 2] 0 _
A1) = mg;OSU - WC]SS<>> ke (3.5)
Integrating one last time to get the position as a function of time we get
in(6 in(6 -
oy = mosn0), o (- mgsin(0) <k o (3.6)
k k k
2(t) = _mgcosiy) C;S(g)t - % (vzo  MgeORY) C:S(0)> et 4 Co (3.7)

Where the constants C; and Cy can be solved for using the initial position. For initial
position z(0) = 0, and in the limit ¢ << m/k the result for z reduces to

z(t) = vyt — %g sin(6)t2 (3.8)
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Which is what would be expected in the absence of drag, since this is just simple
projectile motion with g cos(f) as the component of gravity in the z direction. The drag is
assumed to be small enough that the total air time can be adequately approximated as

2v,,

Lai (39)

T

Using this airtime, t4;, , that has been solved for in terms of the components of takeoff
velocity, the velocity upon landing can be calculated. Using ¢,;. the angular momentum
required for m-spins can be calculated as well. The snowboarder must land after completing
m X 360° of rotation to complete m spins. If the rotation is assumed to be entirely about
the y-axis of Figure 3, the angular velocity the snowboarder must take off with can be
written in terms of air time as

2mm
wy =

(3.10)
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However, this rotation of the snowboarder is not in general around solely the y-axis.
Furthermore, the rigid body model of the snowboarder is a unrealistic one. Rotation in
the air is explored more in 7.

4 Motion in the Halfpipe

The model used to describe the motion of the snowboarder on the ground is extremely
simplified. The mechanical spring model used by Feng and Xin is adapted here to include
friction and drag force, as well as a 3rd coordinate going down the hill [8]. This model is
effective because it can account for the snowboarder doing work by pumping to increase
his kinetic energy. Pumping in the halfpipe is analogous to pumping on a swing, where
the rider in this case pushes against the normal force. First note that the motion of the
snowboarder will be represented in cylindrical coordinates as shown in Figure 5, with the
x coordinate coming out of the page, sloping down the hill.
The kinetic energy T can be calculated as

T = % (:i:2 +h2+ (R— h)Qq's?) (4.1)

And the potential energy is
U = —mg(R — h) cos(¢) cos(0) — mgzx sin(0) (4.2)

Where again the sin(f) and cos(#) terms come from taking the components of gravity
along the respective axes as seen in Figure 4. The Lagrangian is defined as L =T — U.
The Lagrange equations of motion are

d oL JL
— 22 = (4.3)
dt 6qj 8(]]'

Where accounting for the forces of friction and drag in the Lagrange equations of
motion involves adding a ; term for generalized forces, which can be done as long as

the generalized forces satisfy D’Alembert’s principle [10]. The friction force cannot be
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Figure 5: Mechanical model of a snowboarder, adapted from [8]. The generalized coor-

dinates used will be ¢, x, and h, where h is the distance to the snowboarder’s center of
mass.

T

Figure 6: Shows the direction of motion and the components of velocity

accounted for in the Lagrangian itself because it is not a conservative force. Using the



definition in 4.3, the Lagrange equation of motion for the ¢ coordinate becomes
Ro
(R$)? + i?

m | (R — h)?¢ — 2(R — h)h¢ + g(R — h) sin(¢) cos(@)] = —kRp—pn (mg cos @ + mR¢?)
(4.4)

Using in this case Qp = —kR¢— p (mg cos 9+quﬁ2), where this formulation

Ré
V (R)?+i?
assumes a linear resistance from drag as the first term and a frictional force with constant
Ro
V/(R)>+a?

component of friction along the direction of as seen in Figure 6, and the other half of

i as the second term. The part of the friction term comes from taking the

this term is the normal force due to gravity and centripetal acceleration. The Lagrange
equation of motion for the A coordinate is given by

m |h + (R — h)(ﬁ2 — gcos(¢) cos(@)] = —kspringh + Frider (4.5)

Where the ; has been expressed using the mechanical model of a spring, with some
driving force Fjj4e that the snowboarder is providing by pushing off the ground. Lastly
the Lagrange equation of motion for the x coordinate is

md + mgsin(0) = —ki — u;mg cosf (4.6)
(R$)? + 42

Immediately you can recognize this equation for x is nearly the same as equation 3.2,
with an additional term for the frictional force. These equations for ¢, h, and x are not
solved analytically and are rather used in Mathematica to simulate motion.

Now of course this model leaves many things out. The one that seems most blatantly
relevant is the snowboarder’s ability to convert velocity in the qg direction to velocity in the
Z direction and vice versa, or more simply put, it ignores the ability to turn! The other
important thing to keep in mind is that this Lagrangian is only applicable on the domain
—7/2 < ¢ < /2, where the snowboarder is on the ground as can be seen in Figure 5.

5 Motion Simulation

Now that we have a decent model of the motion that happens while the snowboarder is in
the halfpipe, and the motion that happens when the snowboarder is in the air, what’s left
is to put them together. The starting idea is that we can begin by simulating the motion
in the halfpipe to find the initial conditions of the motion in the air, simulate the motion
in the air to find the initial conditions for subsequent motion in the halfpipe, and repeat
for all 5 jumps.

The first set of initial conditions for motion in the halfpipe are taken to be when the
snowboarder is starting from the top of the halfpipe cylinder with some initial velocity.
The components of the initial velocity are taken as Ré[O] = 20m/s, the component across
the width of the halfpipe, and v,[0] = 10m/s, the component down the slope of the half-
pipe. These values are based on rough estimation from YouTube videos. The snowboarder
typically starts upright, so the initial conditions for h are assumed to be h[0] = 1.8m and



R'[0] = 0 corresponding to a 6 foot snowboarder standing upright. Equations 4.4, 4.5,
and 4.6 were solved using NDSolve in Mathematica, with these initial conditions. Then to
find the initial conditions of the air motion, note that the Z component of velocity right
after takeoff is equal to the qAS component of velocity right before takeoff, as can be seen
in Figures 3 and 5. The & component of velocity remains the same, except now has no
friction term, only drag force. The § component of velocity is assumed to be zero, though
is typically some very small value. We then of course also have initial conditions for the
position right before takeoff as well. Thus we can solve equations 3.6 and 3.7, with these
initial conditions.

x[t] the distance down the slope of the hill

Figure 7: Plots to the solutions of equations 4.4, 4.5, and 4.6 with initial conditions
described in Section 5.

Upon landing we can find the find the initial velocity in the qg direction on the ground as
the Z component of velocity from being in the air, reversing the relation we used previously.
The initial value of h is just assumed to be R/2 upon landing, as the human usually must
bend his knees and compress his body to absorb impact. I attempted to iteratively use
these continuity conditions and the equations of motion given in 3.6, 3.7, 4.4, 4.5, and 4.6
to solve for a path down the halfpipe. I expected to be able to construct a path from these
piecewise functions similar to that seen in Figure 8.

Solving the equations of motion in the air was trivial. Solving the equations of motion
on the ground proved difficult. Using the initial conditions described for the first segment of
the path, and a zero pumping function F};4e,, the solution to the coupled equations 4.4, 4.5,
and 4.6 for ¢[t], hlt], and z[t] can be seen in Figure 7. The graph of z[t] is simple and
reasonable, as it describes the position down the slope of the hill and is decreasing in an
expected concave down manner. The graph of ¢[t] is plotted over a large time scale to see



the oscillatory behavior, which should be expected, and the initial steep slope downwards
is on account of the initial velocity, which also seems reasonable. Now the plot of h[t],
which is supposed to indicate the height of the center of mass of the snowboarder, is where
things go awry. Though initially the starting conditions are satisfied, the height quickly
takes on an extreme negative value, which is evidently impossible, as that would indicate
the snowboarder was buried in the snow.

To try to make the h[t], the height of the center of mass, take on realistic values,
I tried to vary Fjiger, the pumping and human force that is pushing up off the ground.
However, no values in the range of 0-10000N, which are all the values of force a human
could realistically be able to apply, gave non-negative heights. After a thorough analysis
of the derivation and an even more thorough analysis of the implementation of the model,
I reach the conclusion that there is likely something flawed in the model itself, as in it is
not a realistic way of looking at the snowboarder halfpipe system, or there was an error
made in the derivation.

Figure 8: Attempted to solve the equations of motions derived with the continuity con-
ditions mentioned, using DSolve in Mathematica. While in principal a realistic solution
should have been found, none was. Instead this figure is a rough representation of what a
path should have looked like.
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6 Energy Analysis

We found in equation 3.9 the snowboarder wants to maximize his velocity along the z-axis
in order to maximize his air time. Using the rigid body model, the kinetic energy in terms
of cylindrical coordinates can be written
T = % (:'32 + R2gb2) (6.1)

We also argued that the Z component of velocity right after takeoff is equal to the qg
component of velocity right before takeoff. Thus in order to have maximal air time, we are
equivalently maximizing the gZ; component of velocity. Now our model thus far has assumed
that the rider is unable to turn, while incorporating turning into this model would clearly
make it more realistic, there are some immediate difficulties with doing so. Imagine first
if the snowboarder were given absolute control over turning ability, as in he could change
direction as sharply as he wanted with no loss of energy. The optimal path for maximizing
air time and degree of rotation in this case would be to quickly ride close to the bottom
of the halfpipe, converting all the gravitational potential energy to kinetic energy. Then
at this peak velocity at the bottom of the halfpipe, the snowboarder would want to turn
all his velocity from the % direction into the qg direction, as can be seen from the kinetic
energy balance in 6.1. Then the rider would perform all jumps in a small a distance of
each other, where he can have a maximal Z component of velocity. Now realistically this is
impossible, there is only some degree of control the snowboarder has over his turn radius,
and typically there is some loss of kinetic energy involved in turning. This tradeoff varies
from snowboarder to snowboarder and turn to turn.

Maximizing the kinetic energy before takeoff is clearly associated with longer air time
as has been argued, and also enables more angular rotation as discussed in 7. Thus, how
to maximize kinetic energy is explored here. We begin by writing energy conservation as

Ti + (Uz - Uf) + Wrider - Elost = Tf (6.2)

Let the subscript f denote the time right before any given jump, and the subscript ¢
denote the time right after the previous jump. Then W4 is the work the rider does by
pumping between the jumps, and Ej.s is the energy lost to friction and air drag between
the jumps. Clearly in order to maximize T in 6.2 the rider will want to minimize Fj,y
and then maximize T;, the change in potential energy (U; — Uy), and the work the rider
does Wi;ger-

The initial kinetic energy in this case is 0 before the performance starts, and then just
the final kinetic energy T of the previous jump in all other cases. Thus the term T; is
automatically maximized. Maximizing the change in potential energy term, (U; — Uy), is
clearly indicating that the rider should ride as far down the hill as possible before performing
his jumps. Now maximizing W4, indicates the snowboarder should contribute as much
pumping energy as possible during riding to maximize his kinetic energy and thus air time.
Finally, Ej,s to friction and drag can be found as

Tf
Elpst = / (Ff 4 Fipag)dr (6.3)
T

i
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The infinitesimal length dr can be found as

dr =\|1+ — + — dx (6.4)

It can also be written in terms of either of the other two coordinates. While trying to
minimize this integral expression of Ej,, there is the constraint

24y =R (6.5)

This constraint corresponds to the snowboarder having to stay on the halfpipe. Al-
though since neither z nor y are known as functions of z, this formulation is of little use
in finding an optimal path. But it is still worth keeping in mind when choosing a path
to maximize airtime, the path should minimize energy lost to friction and drag. Another
important note is that the coefficient of friction is in general not constant and changes
depending on the snowboard’s orientation to the ground. A coefficient of friction of 0.02 is
commonly used for snowboard on snow, however when carving smoothly, this can be even
lower, and when sliding this coefficient is much higher [9].

7 Rotation in the Air

Until now, rotation in the air has only been discussed briefly, and with a rigid body
model. The key to understanding rotation in the air is a proper understanding of angular
momentum. Angular momentum can be calculated as

L=1w (7.1)

Angular momentum is always conserved during the flight of the snowboarder. Thus it is
advantageous for the snowboarder to minimize his moment of inertia in order to maximize
his angular velocity. The snowboarder can do this by tucking his body closely to the axis
of rotation. For example in the case where the angular velocity is along the direction of
one of the principal moments of inertia, like rotation about the y-axis in 9, the angular
momentum reduces to

L =Iw (7.2)

Where I, is the principal moment of inertia about that axis of rotation. For a fixed
angular momentum, and changing principal moment of inertia, we can write
I
w9 = Llwl (73)
Ipo
So clearly in this case for the snowboarder to maximize rotation, it is best for him
to contort his body to have the smallest moment of inertia about that axis, a result that
holds in general as well.
The snowboarder’s rotation about the y and z axes, includes tricks typically called
”spins” or ”corks” where corks just refer to spins during which the snowboarder inverts or
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Spin/Cork

Figure 9: Tricks can be performed by rotation about various axes, with rotation generated
by either angular velocity from takeoff or contortion of the body midair

turns his body sideways during the spin [9]. A full rotation about the x axis is called a
flip. Generating rotation is arguably the most technical part of snowboarding the halfpipe.
During takeoff, the snowboarder can easily convert velocity in the qg into angular rotation
about the x axes, and can generate additional angular velocity by leaning backwards,
shifting his center of mass and producing a moment this way. Generating rotation about
the y and z axes is largely from winding up the upper body before takeoff, and then
sliding/whipping either the backedge or frontedge of the board around at takeoff. The
energy of this rotation can come from the rider leaping and twisting to generate torque,
or from converting linear momentum into angular momentum. The energy of rotation is
given by

1
E’I‘Ot = 5[ . w2 (74)

In addition to rotation from angular momentum at takeoff, during flight the human
body can in fact end up spinning around axes with no initial angular momentum, or flip
and spin without any initial rotation at all [11]. It has even been shown that in fact even a
full flip can be done under the right conditions with no angular momentum at all, simply
by reorienting the body in the proper way midair [11]. This emphasizes how the rigid body
model is not enough to capture the complex motion of a snowboarder. In general, a model
of several actuated joints, with many degrees of freedom is used to represent the human
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body’s complex aerial motion, however this type of analysis will not be replicated here.

8 Conclusion

This report analyzed a few features of snowboarding the halfpipe, with the most thorough
analysis on how to maximize air time. The model of pumping in the halfpipe was developed
using the Lagrangian, incorporating non conservative forces. The model of translational
motion in the air was akin to projectile motion with a drag force, and the model of the
motion on the snow in the halfpipe was developed for a spring like body. Finally, a brief
overview of some of the mechanics behind performing tricks in the air was discussed.

There were several weaknesses of this analysis. The first was that the rigid body
model was thoroughly overused. Another big weakness was that the equations of motion
developed were not able to be solved with a realistic solution. Other shortcomings included
that no effective description of turning was incorporated, and the aerial trick motion was
only explored to a limited extent.
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